Organic Chemistry Portal
Chemicals >> Oxidizing Agents

Copper Compounds

Recent Literature

A simple and mild TEMPO-CuCl catalyzed aerobic oxidation of primary and secondary alcohols in ionic liquid [bmim][PF6]  gave the corresponding aldehydes and ketones with no trace of overoxidation to carboxylic acids. The product can be isolated by a simple extraction with organic solvent, and the ionic liquid can be recycled or reused.
I. A. Ansari, R. Gree, Org. Lett., 2002, 4, 1507-1509.

A four-component system consisting of acetamido-TEMPO/Cu(ClO4)2/TMDP/DABCO in DMSO allows an efficient room-temperature aerobic alcohol oxidation of various alcohols into their corresponding aldehydes or ketones in good to excellent yields. The catalytic system can be recycled.
N. Jiang, A. J. Ragauskas, J. Org. Chem., 2006, 71, 7087-7090.

The system Cu(ClO4)2/acetamido-TEMPO/DMAP catalyses the room-temperature aerobic oxidation of primary alcohols to aldehydes in the ionic liquid [bmpy]PF6. The catalysts can be recycled and reused.
N. Jiang, A. J. Ragauskas, Org. Lett., 2005, 7, 3689-3692.

A direct metal-free α-hydroxylation of α-unsubstituted β-oxoesters and β-oxoamides using m-chloroperbenzoic acid as the oxidant enables straightforward metal-free access to important α-hydroxy-β-dicarbonyl moieties under mild reaction conditions. Furthermore, the hydroxylated products can readily be converted into vicinal tricarbonyl compounds, which are useful synthetic precursors.
H. Asahara, N. Nishiwaki, J. Org. Chem., 2014, 79, 11735-11739.

A facile nickel-catalyzed oxidation of primary alcohols with tetrabutylammonium peroxydisulfate in the presence of ammonium hydrogen carbonate under basic aqueous conditions provides access to various aliphatic, aromatic and heterocyclic nitriles in excellent yields with very high purity.
F.-E. Chen, Y.-Y. Li, M. Xu, H.-Q. Jia, Synthesis, 2002, 1804-1806.

An enantioselective alkoxycarbonylation-amination cascade process of terminal allenes with CO, methanol, and arylamines proceeds under mild conditions (r.t., ambient pressure CO) via oxidative Pd(II) catalysis using a chiral aromatic spiroketal-based diphosphine ligand and a Cu(II) salt as an oxidant to afford various α-methylene-β-arylamino acid esters in good yields with excellent enantioselectivity and high regioselectivity.
J. Liu, Z. Han, X. Wang, Z. Wang, K. Ding, J. Am. Chem. Soc., 2015, 137, 15346-15349.

A Pd(II)-catalyzed oxidative approach to construct polysubstituted pyrroles from N-homoallylicamines and arylboronic acids proceeds through cascade formation of C-C and C-N bonds via oxidative arylation of unactive alkenes, followed by intramolecular aza-Wacker cyclization.
J. Zheng, L. Huang, C. Huang, W. Wu, H. Jiang, J. Org. Chem., 2015, 80, 1235-1242.

A novel palladium-catalyzed oxidative, intramolecular cyclocarbonylation provides an efficient and direct approach for the construction of valuable 1,3,4-oxadiazole-2(3H)-ones and their derivatives.
F. Ji, X. Li, W. Guo, W. Wu, H. Jiang, J. Org. Chem., 2015, 80, 5713-5718.

The use of Cu(OAc)2 enables a dehydrogenative cross-coupling between two heteroarenes via disproportionation of the copper mediator. This synthetic protocol provides a concise and "green" access to unsymmetrical biheteroarenes bearing structural motifs of substantial utility in organic synthesis.
Z. F. Mao, Z. Wang, Z. Q. Xu, F. Huang, Z. K. Yu, R. Wang, Org. Lett., 2012, 14, 3854-3857.