Organic Chemistry Portal
Chemicals >> Oxidizing Agents

Cumene Hydroperoxide, CMHP

Cumene hydroperoxide is a relatively stable organic peroxide. This oxidizing agent is commercially available with a purity of ~80%. A 0.2 M solution in benzene has a half-life of 29 hours at 145C. The decomposition products of cumene hydroperoxide are methylstyrene, acetophenone, and cumyl alcohol. Pure cumene hydroperoxide can be stored at room temperature, but the potential for an uncontrolled reaction and explosion is high. Cumyl as well as other hydroperoxides can undergo rapid decomposition under the influence of a wide range of trace compounds, such as acids and metals. (M. A. Francisco, Chem. Eng. News, 1993, 71, 4. Link).


Recent Literature


A new catalytic system for the asymmetric epoxidation of allylic alcohols has been developed featuring high enantioselectivity for Z olefins, catalyst loading of less than 1 mol%, reaction temperatures of 0C to room temperature over a shorter time, and simple workup procedures for small expoxy alcohols.
W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Angew. Chem. Int. Ed., 2005, 44, 4389-4391.


Chiral bishydroxamic acid ligands provided good yields and high enantioselectivities in the vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols.
W. Zhang, H. Yamamoto, J. Am. Chem. Soc., 2007, 129, 286-287.


A new and efficient chiral catalyst system, lanthanum-chiral BINOL-tris(4-fluorophenyl)phosphine oxide-cumene hydroperoxide, was developed for the epoxidation of α,β-unsaturated ketones, thus providing the corresponding epoxy ketones with excellent enantioselectivities (up to >99% ee) in good to excellent yields at room temperature.
R. Kino, K. Daikai, T. Kawanami, H. Furuno, J. Inanaga, Org. Biomol. Chem., 2004, 2, 1822-1824.


With an easily accessible cinchona alkaloid catalyst, efficient enantioselective peroxidation and epoxidation have been successfully developed. Employing readily available α,β-unsaturated ketones and hydroperoxides, this novel reaction will open new possibilities in the asymmetric synthesis of chiral peroxides and epoxides.
X. Lu, Y. Liu, B. Sun, B. Cindric, L. Deng, J. Am. Chem. Soc., 2008, 130, 8134-8135.


Nitroarenes react with anions of tert-butyl and cumyl hydroperoxides in the presence of strong bases to form substituted o- and p-nitrophenols. The reaction usually proceeds in high yields and is of practical value as a method of synthesis and manufacturing of nitrophenols.
M. Makosza, K. Sienkiewicz, J. Org. Chem., 1998, 63, 4199-4208.