Organic Chemistry Portal
Chemicals >> Reducing Agents > Silanes

Phenylsilane

Recent Literature


An organotin hydride-catalyzed, silicon hydride-mediated method for effecting the conjugate reduction of α,β-unsaturated ketones was developed.
D. S. Hays, M. Scholl, G. C.Fu, J. Org. Chem., 1996, 61, 6751-6752.


A chemoselective reduction of the carbonyl functionality via hydrosilylation using low loadings of a copper(I) catalyst bearing an abnormal NHC takes place at ambient temperature in excellent yield within a very short reaction time. The hydrosilylation reaction of α,β-unsaturated carbonyl compounds gives allyl alcohols in good yields. The catalyst can also be used for azide-alkyne cycloadditions.
S. R. Roy, S. C. Sau, S. K. Mandal, J. Org. Chem., 2014, 79, 9150-9160.


In a straightforward process for the N-alkylation of amines, readily available carboxylic acids and silanes as the hydride source enable an effective C-N bond construction under mild conditions and allow obtaining a broad range of alkylated secondary and tertiary amines, including fluoroalkyl-substituted anilines as well as the bioactive compound Cinacalcet HCl.
I. Sorribes, K. Jung, M. Beller, J. Am. Chem. Soc., 2014, 136, 14314-14319.


A new strategy for the catalytic asymmetric aldol reaction of ketones was developed that relies on a chiral copper(I) complex-catalyzed domino reduction/aldol reaction sequence in the presence of phenylsilane.
J. Deschamp, O. Chuzel, J. Hannedouche, O. Riant, Angew. Chem. Int. Ed., 2006, 45, 1292-1297.


The sequential combination of Ti-catalyzed hydroamination of alkynes followed by the Ti-catalyzed hydrosilylation of the intermediate imines is an efficient one-pot process for the conversion of alkynes and primary amines into secondary amines.
A. Heutling, F. Pohlki, I. Bytschkov, S. Doye, Angew. Chem. Int. Ed., 2005, 44, 2951-2954.


An indium triiodide catalyzed deoxygenative functionalization of N-sulfonyl amides with silyl cyanide or silyl enolates in the presence of hydrosilanes gives α-cyanoamines and β-aminocarboxyl compounds, respectively.
Y. Inamoto, Y. Kaga, Y. Nishimoto, M. Yasuda, A. Baba, Org. Lett., 2013, 15, 3448-3451.


Y. Inamoto, Y. Kaga, Y. Nishimoto, M. Yasuda, A. Baba, Org. Lett., 2013, 15, 3448-3451.


The In(OAc)3-catalyzed reaction of bromo- and iodoalkanes with PhSiH3 in THF at 70 C gave dehalogenated alkanes in good to high yields in the presence of Et3B and air. 2,6-lutidine as additive enabled an efficient reduction of simple and functionalized iodoalkanes in EtOH. GaCl3 was found to be an effective catalyst for the reduction of haloalkanes with poly(methylhydrosiloxane).
K. Miura, M. Tomita, Y. Yamada, A. Hosomi, J. Org. Chem., 2007, 72, 787-792.


A route to trisubstituted olefins through a palladium-catalyzed alkyne insertion with unactivated alkyl iodides followed by a reduction proceeds under mild conditions and tolerates a range of functional groups and substitution patterns. Mechanistic inquiry suggests that the transformation proceeds through a hybrid radical/organometallic pathway.
E. R. Fruchey, B. M. Monks, A. M. Patterson, S. P. Cook, Org. Lett., 2013, 15, 4362-4365.


A highly Marknovikov selectiv conversion of various olefins to azides was achieved using a cobalt catalyst, 3 equiv of TsN3 as nitrogen source and simple silanes (PhSiH3, TMDSO).
J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc., 2005, 127, 8294-8295.


A convenient protocol for the catalytic dehydration of aromatic and aliphatic amides using silanes in the presence of catalytic amounts of fluoride allows the synthesis of a wide range of aliphatic and aromatic nitriles with high selectivity under mild conditions.
S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Org. Lett., 2009, 11, 2461-2464.


Catalytic amounts of phosphine and triethylamine enable an efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction. Silyl chloride as the initial promoter activates the phosphine oxide for reduction, while decomposition of Et3N·HCl resulted in regeneration of base, which mediated formation of phosphorus ylide.
C.-J. Lee, T.-H. Chang, J. K. Yu, G. M. Reddy, M.-Y. Hsiao, W. Lin, Org. Lett., 2016, 18, 3758-3761.