Organic Chemistry Portal
Reactions > Organic Synthesis Search

Categories: C-C Bond Formation > Chains >

Propargylic Substitution

Related:

 


Recent Literature


A general and efficient FeCl3-catalyzed substitution reaction of propargylic alcohols with carbon- and heteroatom-centered nucleophiles such as allyl trimethylsilane, alcohols, aromatic compounds, thiols, and amides, forms new C-C, C-O, C-S and C-N bonds.
Z.-P. Zhan, J.-L. Yu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem., 2006, 71, 8298-8301.


A general and efficient FeCl3-catalyzed substitution reaction of propargylic alcohols with carbon- and heteroatom-centered nucleophiles such as allyl trimethylsilane, alcohols, aromatic compounds, thiols, and amides, forms new C-C, C-O, C-S and C-N bonds.
Z.-P. Zhan, J.-L. Yu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem., 2006, 71, 8298-8301.


A palladium-catalyzed cross-coupling of allyl boronates and chiral propargyl acetates delivers chiral 1,5-enynes with excellent levels of chirality transfer. The reaction can be applied across a broad range of substrates.
M. J. Ardolino, J. P. Morken, J. Am. Chem. Soc., 2012, 134, 8770-8773.


The reaction of alkoxides with boron trichloride results in the generation of cations that can be allylated in subsequent transformations. The absence of Brønsted acids can make a significant difference in such syntheses.
G. W. Kabalka, M.-L. Yao, S. Borella, J. Am. Chem. Soc., 2006, 128, 11320-11321.


An efficient Cu(OTf)2-catalyzed sp3-sp2 coupling of propargylic alcohols with terminal alkenes gives a diverse range of 1,4-enynes in very good yields. The reaction is tolerant to air and atom-economical.
G.-B. Huang, X. Wang, Y.-M. Pan, H.-S. Wang, G.-Y. Yao, Y. Zhang, J. Org. Chem., 2013, 78, 2742-2745.


Under different conditions, the reaction of propargyl alcohols and terminal alkynes leads to the selective formation of 1,4-diynes and polysubstituted furans/pyrroles. Water is the only byproduct in the atom economic, selective synthesis of 1,4-diynes and pyrroles, whereas the synthesis of furans is fully atom economic.
T. Wang, X.-l. Chen, L. Chen, Z.-p. Zhan, Org. Lett., 2011, 13, 3324-3327.


C-O bond cleavage of lithium alkoxides occurs readily at room temperature in the presence of titanium(IV) halides. Capture of the resultant carbocation by alkynes provides an efficient route to trisubstituted (E)-alkenyl halides with high stereoselectivity.
M.-L. Yao, T. R. Quick, Z. Wu, M. P. Quinn, G. W. Kabalka, Org. Lett., 2009, 11, 2647-2649.


Highly substituted α,α-disubstituted β-alkynyl esters are readily prepared from allenyl esters and either alkyl halide, acid chloride, or alkyl chloroformate, mediated by an amide base. This highly efficient and mild process tolerates various functional groups and provides α,α-disubstituted β-alkynyl esters in good to excellent yields.
W. Wang, B. Xu, G. B. Hammond, Org. Lett., 2008, 10, 3713-3716.


A one-step, three-component condensation of allenyl boronic acids or allenyl pinacolboronates with amines and aldehydes affords α-allenyl or α-propargyl α-amino acids and anti-β-amino alcohols. Secondary amines generate exclusively α-allenyl α-amino acids, while primary aliphatic amines lead to α-propargyl α-amino acids.
F. Liepouri, G. Bernasconi, N. A. Petasis, Org. Lett., 2015, 17, 1628-1631.


The room-temperature nucleophilic addition of vinyl azides to propargylic alcohols in the presence of a catalytic amount of BF3·Et2O provides 4-ynamides. The procedure is operationally convenient, shows broad substrate scope, and tolerates many functional groups. Further, a Vilsmeier intramolecular cyclization of 4-ynamides gives dihydrofuran-2(3H)-ones with the alkyne group as the nucleophile.
J. Zheng, J.-H. Lin, L.-Y. Yu, Y. Wei, X. Zheng, J.-C. Xiao, Org. Lett., 2015, 17, 6126-6129.


A one-pot procedure for the synthesis of 2-alkyl-2-arylcyanoacetates based on a Pd(OAc)2/dppf-catalyzed enolate arylation followed by in situ alkylation tolerates a diverse range of aryl and heteroaryl bromides, and provides a rapid entry to a wide range of products in very good to yield.
X. Wang, A. Guram, E. Bunel, G.-Q. Cao, J. R. Allen, M. M. Faul, J. Org. Chem., 2008, 73, 1643-1645.