Organic Chemistry Portal
Reactions > Organic Synthesis Search

Categories: C-Cl Bond Formation >

Synthesis of α-chloroketones and α-chloroaldehydes

Recent Literature


The use of the commercially available trichloromethanesulfonyl chloride enables an efficient α-chlorination of aldehydes, including a catalytic asymmetric version, under very mild reaction conditions. This chlorinating reagent facilitates workup and purification of the product, and minimizes the formation of toxic, chlorinated organic waste.
C. Jimeno, L. Cao, P. Renaud, J. Org. Chem., 2016, 81, 1251-1255.


Aliphatic and aromatic ketones can be directly converted into their corresponding α-chloroketone acetals in very good yields using iodobenzene dichloride in ethylene glycol in the presence of 4 Å molecular sieves at room temperature.
J. Yu, C. Zhang, Synthesis, 2009, 2324-2328.


A fluorous (S)-pyrrolidine-thiourea bifunctional organocatalyst shows good activity and enantioselectivity for direct α-chlorination of aldehydes using N-chlorosuccinimide (NCS) as the chlorine source. The catalyst can be recovered from the reaction mixture by fluorous solid-phase extraction with excellent purity for direct reuse.
L. Wang, C. Cai, D. P. Curran, W. Zhang, Synlett, 2010, 433-436.


A direct organocatalytic enantioselective α-chlorination of aldehydes proceeds for a series of different aldehydes with NCS as the chlorine source using easily available catalysts such as L-proline amide and (2R,5R)-diphenylpyrrolidine. The α-chloro aldehydes are obtained in very good yield and high enantioselectivity.
N. Halland, A. Braunton, S. Bachmann, M. Marigo, K. A. Jorgensen, J. Am. Chem. Soc., 2004, 126, 4790-4791.


HTIB mediates an oxidative transposition of vinyl halides to provide α-halo ketones as useful and polyvalent synthetic precursors. Insights into the mechanism and an enantioselective transformation are reported too.
A. Jobin-Des Lauriers, C. Y. Legault, Org. Lett., 2016, 18, 108-111.


In a direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones, trichloroisocyanuric acid serves both as stoichiometric oxidant and α-halogenating reagent. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols MeOH as an additive is essential to promote chlorination of the intermediary ketones.
Y. Jing, C. G. Daniliuc, A. Studer, Org. Lett., 2014, 16, 4932.


In a direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones, trichloroisocyanuric acid serves both as stoichiometric oxidant and α-halogenating reagent. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols MeOH as an additive is essential to promote chlorination of the intermediary ketones.
Y. Jing, C. G. Daniliuc, A. Studer, Org. Lett., 2014, 16, 4932-4935.


The use of enamine catalysis has provided a new organocatalytic strategy for the enantioselective chlorination of aldehydes to generate α-chloro aldehydes, an important chiral synthon for chemical and medicinal agent synthesis.
M. P. Brochu, S. P. Brown, D. W. C. MacMillan, J. Am. Chem. Soc., 2004, 126, 4108-4109.


Catalytic enantioselective fluorination and chlorination reactions of carbonyl compounds were achieved with high enantioselectivity by the use of a dbfox-NiII complex.
N. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. Int. Ed., 2005, 44, 4204-4207.


The regio- and stereoselective aminochlorination of α,β-unsaturated ketones with N,N-dichloro-p-toluenesulfonamide (4-TsNCl2) and CuOTf as catalyst provides an easy access to vicinal haloamino ketones, with excellent regioselectivity and good yields. Aromatic and aliphatic enones give opposite regioselectivity.
D. Chen, C. Timmons, S. Chao, G. Li, Eur. J. Org. Chem., 2004, 3097-3101.


Poly{[4-(hydroxy)(tosyloxy)iodo]styrene} was efficient in the halotosyloxylation reaction of alkynes with iodine or NBS or NCS. The polymer reagent could be regenerated and reused.
J.-M. Chen, X. Huang, Synthesis, 2004, 1557-1558.


A mild and rapid formal electrophilic α-azidation of 1,3-dicarbonyl compounds using commercially available Bu4NN3 as the azide source is mediated by (diacetoxyiodo)benzene. The reaction conditions are Bäcklund to the ones employed in analogous halogenations with Et4NX (X = Cl, Br, I).
M. J. Galligan, R. Akula, H. Ibrahim, Org. Lett., 2014, 16, 600-603.


Trimethylchlorosilane was used as chlorine source for the α-chlorination of 1,3-dicarbonyl compounds with phenyliodonium diacetate as oxidant at room temperature to provide α-monochlorinated products in good yield. TMSBr could be used to form monobromide products.
S. Chong, Y. Su, L. Wu, W. Zhang, J. Ma, X. Chen, D. Huang, K.-H. Wang, Y. Hu, Synthesis, 2016, 48, 1359-1370.


Efficient oxidative α-halogenation of 1,3-dicarbonyl compounds has been achieved by employing a system comprising of sub-stoichiometric amounts of TiX4 (X = Cl, Br) in the presence of environmentally benign hydrogen peroxide (H2O2) or peracetic acid (MeCO3H) as the oxidants. The end point of the reaction is accompanied by a sharp colour change.
R. Akula, M. J. Galligan, H. Ibrahim, Synthesis, 2011, 347-351.


α-Diazo-β-dicarbonyl compounds were chlorinated using (dichloro)iodobenzene and an activating catalyst. Acyclic diazocarbonyls reacted faster than cyclics, and β-diketones were much faster to react than β-keto esters or β-diesters.
K. E. Coffrey, G. K. Murphy, Synlett, 2015, 26, 1003-1007.

Related


Au-catalyzed hydration of haloalkynes enables an atom-economical synthesis of a wide range of α-halomethyl ketones as an alternative to conventional α-halogenation of ketones. Other outstanding features include excellent yields from both alkyl- and aryl-substituted haloalkynes and wide functional group tolerance.
L. Xie, Y. Wu, W. Yi, L. Zhu, J. Xiang, W. He, J. Org. Chem., 2013, 78, 9190-9191.


A practical one-step method for the preparation of α-chloroketones from readily available, inexpensive phenylacetic acid derivatives utilizes the unique reactivity of an intermediate Mg-enolate dianion, which displays selectivity for the carbonyl carbon of chloromethyl carbonyl electrophiles. Decarboxylation of the intermediate occurs spontaneously during the reaction quench.
M. J. Zacuto, R. F. Dunn, M. Figus, J. Org. Chem., 2014, 79, 8917-8925.


A chemoselective addition of halomethyllithium carbenoids to Weinreb amides at -78°C enables a straightforward synthesis of variously functionalized α,β-unsaturated α'-haloketones. The exceptional stability of the intermediate furnished by the N-methoxy group does not allow a 2nd addition of LiCH2X and thus prevents from formation of carbinols.
V. Pace, L. Castoldi, W. Holzer, J. Org. Chem., 2013, 78, 7764-7770.