Organic Chemistry Portal
Reactions > Organic Synthesis Search

Categories: C-H Bond Formation >

Reduction of α,β-unsaturated compounds


Recent Literature

A Pd/C-catalyzed hydrogenation using diphenylsulfide as a catalyst poison selectively reduces olefin and acetylene functionalities without hydrogenolysis of aromatic carbonyls and halogens, benzyl esters, and N-Cbz protective groups.
A. Mori, Y. Miyakawa, E. Ohashi, T. Haga, T. Maegawa, H. Sajiki, Org. Lett., 2006, 8, 3279-3281.

Pd/P(t-Bu)3 is an efficient and mild catalyst for selective reduction of various alkenes under transfer-hydrogenation conditions leading to the corresponding saturated derivatives in good yields.
J. M. Brunel, Synlett, 2007, 330-332.

A new recyclable catalyst composed of palladium nanoparticles dispersed in an organic polymer was synthesized by a simple procedure from readily available reagents. This catalyst is robust, and highly active in many organic transformations including alkene and alkyne hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation.
C. M. Park, M. S. Kwon, J. Park, Synthesis, 2006, 3790-3794.

A new recyclable catalyst composed of palladium nanoparticles dispersed in an organic polymer was synthesized by a simple procedure from readily available reagents. This catalyst is robust, and highly active in many organic transformations including alkene and alkyne hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation.
C. M. Park, M. S. Kwon, J. Park, Synthesis, 2006, 3790-3794.

Nanopalladium particles supported on a amphiphilic polystyrene-poly(ethylene glycol) resin catalyzed hydrogenation of olefins and hydrodechlorination of chloroarenes under aqueous conditions.
R. Nakao, H. Rhee, Y. Uozumi, Org. Lett., 2005, 7, 163-165.

A system composed of nickel(II) chloride, lithium metal, a catalytic polymer-supported arene, and ethanol, has been efficiently applied to the conjugate reduction of various α,β-unsaturated carbonyl compounds under very mild reaction conditions.
F. Alonso, I. Osante, M. Yus, Synlett, 2006, 3017-3020.

An organotin hydride-catalyzed, silicon hydride-mediated method for effecting the conjugate reduction of α,β-unsaturated ketones was developed.
D. S. Hays, M. Scholl, G. C.Fu, J. Org. Chem., 1996, 61, 6751-6752.

An efficient and highly enantioselective conjugate transfer hydrogenation of α,β-unsaturated ketones is catalyzed by a salt made from tert-butyl valinate and a recently introduced powerful chiral phosphoric acid catalyst (TRIP).
N. J. A. Martin, B. List, J. Am. Chem. Soc., 2006, 128, 13368-13369.

The use of a chiral imidazolidinone catalyst has provided a new organocatalytic strategy for the enantioselective reduction of β,β-substituted α,β-unsaturated aldehydes to generate β-stereogenic aldehydes using ethyl Hantzsch ester as the hydrogen source. In addition, an acceleration of E-Z isomerization prior to selective E-olefin reduction allows the use of geometrically impure enals in this operationally simple protocol.
S. G. Ouellet, J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem. Soc., 2005, 7, 32-33.

A nickel/bisphosphine catalyst enables an asymmetric transfer hydrogenation of α,β-unsaturated esters in the presence of N,N-dimethylformamide (DMF) as the hydride source.
S. Guo, J. Zhou, Org. Lett., 2016, 18, 5344-5347.

Selective conjugate reductions of α,β-unsaturated aldehydes were achieved in the presence of rhodium(bisoxazolinylphenyl) complexes as catalysts and alkoxyhydrosilanes as reducing agents.
Y. Kanazawa, H. Nishiyama, Synlett, 2006, 3343-3345.

A highly chemoselective conjugate reduction of electron-deficient Michael acceptors, including α,β-unsaturated ketones, carboxylic esters, nitriles and nitro compounds with PMHS in the presence of a catalytic amount of B(C6F5)3 is described.
S. Chandrasekhar, G. Chandrasekhar, M. S. Reddy, P. Srihari, Org. Biomol. Chem., 2006, 4, 1650-1652.

A ligand-modified, economical version of Stryker's reagent is based on a bidentate, achiral bis-phosphine. Generated in situ, “(BDP)CuH” smoothly effects conjugate reductions of a variety of unsaturated substrates, including those that are normally unreactive toward Stryker's reagent.
B. A. Baker, Ž. V. Bošković, B. H. Lipshutz, Org. Lett., 2008, 10, 289-292.

A complex of catalytic amounts of CuH with a nonracemic JOSIPHOS or SEGPHOS ligand leads to exceedingly efficient and highly enantioselective 1,4-reductions of α,β-disubstituted enoates and lactones using PMHS as the stoichiometric reducing agent.
B. H. Lipshutz, J. M. Servesko, B. R. Taft, J. Am. Chem. Soc., 2004, 126, 8352-8353.

Bis-methylamido Hantzsch dihydropyridine is an effective transfer hydrogenation reagent for the reduction of α,β-unsaturated ketones. Unreacted Hantzsch amide and the bis-methylamidopyridine byproduct are effectively removed by extraction in contrast to the commonly used Hantzsch diethyl ester. The reaction is more effective for conjugated aromatic substrates than for aliphatics.
S. A. Van Arman, A. J. Zimmet, I. E. Murray, J. Org. Chem., 2016, 81, 3528-3532.

Chiral rhodium-bis(oxazolinyl)phenyl complexes catalyze the conjugate hydrosilylation of 3,3-diarylacrylate derivatives to prepare optically active 3,3-diarylpropanoate derivatives in high yields and high enantioselectivities.
K. Itoh, A. Tsuruta, J.-i. Ito, Y. Yamamoto, H. Nishiyama, J. Org. Chem., 2012, 77, 10914-10919.

Catalytic amounts of copper hydride ligated by a nonracemic SEGPHOS ligand leads in situ to an extremely reactive species capable of effecting asymmetric hydrosilylations of conjugated cyclic enones with very high enantioselectivity.
B. H. Lipshutz, J. M. Servesko, T. B. Petersen, P. P. Papa, A. A. Lover, Org. Lett., 2004, 6, 1273-1275.

Various carbon-carbon double bonds in olefins and α,β-unsaturated ketones were effectively reduced to the corresponding alkanes and saturated ketones, using ammonium formate as a hydrogen transfer agent in the presence of Pd/C as catalyst in refluxing methanol.
Z. Paryzek, H. Koenig, B. Tabacka, Synthesis, 2003, 2023-2026.

Poly(ethylene glycol) (PEG) (400) has been found to be a superior solvent over ionic liquids by severalfold in promoting the hydrogenation of various functional groups using Adams' catalyst. Both the catalyst and PEG were recycled efficiently over 10 runs without loss of activity, and without substrate cross contamination.
S. Chandrasekhar, S. Y. Prakash, C. L. Rao, J. Org. Chem., 2006, 71, 2196-2199.

A microwave-assisted, palladium-catalyzed catalytic transfer hydrogenation of different homo- or heteronuclear organic compounds using formate salts as a hydrogen source was performed in ([bmim][PF6]. Essentially pure products could be isolated in moderate to excellent yields by simple liquid-liquid extraction.
H. Berthold, T. Schotten, H. Hönig, Synthesis, 2002, 1607-1610.

Palladium-catalyzed hydrosilylation of α,β-unsaturated ketones and cyclopropyl ketones with hydrosilanes gives (Z)-silyl enolates in good yields.
Y. Sumida, H. Yorimitsu, K. Oshima, J. Org. Chem., 2009, 74, 7986-7989.

Superelectrophilic reactivity of α,β-unsaturated amides towards weak nucleophiles such as arenes and cyclohexane is initiated either with triflic acid or with excess AlCl3. Condensation with aromatics in the presence of AlCl3 gives 3-arylpropionamides in excellent yields, while a selective ionic hydrogenation of some amides with cyclohexane gives saturated amides.
 K. Y. Koltunov, S. Walspurger, J. Sommer, Eur. J. Org. Chem., 2004, 4039-4047.

γ-Hydroxy-α,β-acetylenic esters are used as precursors for the preparation of γ-hydroxy-α,β-alkenoic esters by means of trans-selective additions of two hydrogen atoms or one hydrogen atom and one iodine atom across the triple bonds. These methods allow the preparation of β-substituted and α,β-disubstituted alkenoic esters in highly stereoselective manners.
C. T. Meta, K. Koide, Org. Lett., 2004, 6, 1785-1787.

A highly efficient iridium-catalyzed hydrogenation of α,β-unsaturated carboxylic acids in the presence of chiral spiro-phosphino-oxazoline ligands affords α-substituted chiral carboxylic acids in exceptionally high enantioselectivities and reactivities.
S. Li, S.-F. Zhu, C.-M. Zhang, S. Song, Q.-L. Zhou, J. Am. Chem. Soc., 2008, 130, 8584-8585.

Ruthenium complexes of rigid diphosphane ligands with large dihedral angles are highly efficient catalysts for the asymmetric hydrogenation of α,β-unsaturated carboxylic acids.
X. Cheng, Q. Zhang, J.-H. Xie, L.-X. Wang, Q.-L. Zhou, Angew. Chem. Int. Ed., 2005, 44, 1118-1121.

A highly enantioselective reduction of α,β-unsaturated nitriles can be conducted by using a Cu(OAc)2/josiphos complex as the catalyst under hydrosilylation conditions. The reaction provides access to valuable β-aryl-substituted chiral nitriles in good yields and with excellent enantioselectivities.
D. Lee, D. Kim, S. Yun, Angew. Chem. Int. Ed., 2006, 45, 2785-2787.

A range of 3-aryl-3-pyridylacrylonitriles were reduced with high levels of enantioselectivity under optimal conditions employing a copper/Josiphos complex in the presence of polymethylhydrosiloxane (PMHS).
D. Lee, Y. Yang, J. Yun, Org. Lett., 2007, 9, 2749-2751.

A highly efficient and highly enantioselective Hantzsch ester mediated conjugate transfer hydrogenation of β,β-disubstituted nitroolefins is catalyzed by a Jacobsen-type thiourea catalyst.
N. J. A. Martin, L. Ozores, B. List, J. Am. Chem. Soc., 2007, 129, 8976-8977.

A highly efficient and enantioselective Hantzsch ester mediated conjugate reduction of β-nitroacrylates is catalyzed by a Jacobsen thiourea catalyst. The reaction is a key step in a new route to optically active β2-amino acids.
N. J. A. Martin, X. Chen, B. List, J. Am. Chem. Soc., 2008, 130, 13862-13863.

Various di- and triarylfurans were prepared in high yields from but-2-ene-1,4-diones and but-2-yne-1,4-diones using formic acid in the presence of a catalytic amount of palladium on carbon in poly(ethylene glycol)-200 as solvent under microwave irradiation.
H. S. P. Rao, S. Jothilingam, J. Org. Chem., 2003, 68, 5392-5394.

Several aryl-substituted pyrrole derivates were prepared conveniently in a microwave-assisted one pot-reaction from but-2-ene-1,4-diones and but-2-yne-1,4-diones via Pd/C-catalyzed hydrogenation of the carbon-carbon double bond/triple bond followed by amination-cyclization.
H. S. P. Rao, S. Jothilingam, H. W. Scheeren, Tetrahedron, 2004, 60, 1625-1630.

Cu-catalyzed asymmetric conjugate reduction of β-substituted ketones leads to enantiomerically enriched diphenylsilyl enol ethers, which are utilized in a diastereoselective Pd-catalyzed α-arylation of various aryl bromides to yield disubstituted cycloalkanones with excellent levels of enantiomeric and diastereomeric purity. The procedure can be carried out in one-pot.
J. Chae, J. Yun, S. L. Buchwald, Org. Lett., 2004, 6, 4809-4812.