Organic Chemistry Portal
Reactions > Organic Synthesis Search

Categories: CN Bond Formation >

Synthesis of nitriles

Related:


Name Reactions


Schmidt Reaction


Recent Literature


The Schmidt reaction of aldehydes with NaN3 furnishes the corresponding nitriles in near quantitative yields in the presence of TfOH and tolerates various electron-withdrawing and electron-donating substituents. Formanilides,  common side products, are not observed. The reaction is easily scalable, high yielding, and nearly instantaneous.
B. V. Rokade, J. R. Prabhu, J. Org. Chem., 2012, 77, 5364-5370.


Participation of 'activated DMSO' in the one-pot transformation of aldehydes to nitriles allows the generation of a wide range of aromatic, heterocyclic, and aliphatic nitriles with water as the only byproduct. A straightforward and practical procedure is demonstrated on a multigram scale.
J. K. Augustine, A. Bombrun, R. N. Atta, Synlett, 2011, 2223-2227.


A mild, aerobic, catalytic synthesis of nitriles directly from alcohols and aqueous ammonia proceeds via a dehydrogenation cascade mediated by catalytic CuI, bpy, and TEMPO in the presence of oxygen. The substrate scope includes various functionalized aromatic and aliphatic alcohols. This protocol also enabled a one-pot synthesis of various biaryl heterocycles directly from commercially available alcohols.
W. Yin, C. Wang, H. Huang, Org. Lett., 2013, 15, 1850-1853.


Various alcohols were efficiently converted into the corresponding nitriles at room temperature by treatment with tert-butyl hypochlorite, diiodine, or 1,3-diiodo-5,5-dimethylhydantoin (DIH) in the presence of TEMPO, followed by treatment with diiodine and aqueous ammonia. The nitriles were obtained in good yields and high purities by a simple extraction of the reaction mixture with chloroform and subsequent removal of the solvent.
H. Shimojo, K. Moriyama, H. Togo, Synthesis, 2013, 45, 2155-2156.


An efficient one-pot conversion of various alcohols, aldehydes and primary amines into the corresponding nitriles in excellent yields was easily achieved by the use of trichloro­isocyanuric acid (TCCA) as an oxidant in aqueous ammonia. Also, various benzylic halides were smoothly and directly converted into the corresponding aromatic nitriles in high yields under the same conditions.
H. Veisi, Synthesis, 2010, 2631-2635.


A facile nickel-catalyzed oxidation of primary alcohols with tetrabutylammonium peroxydisulfate in the presence of ammonium hydrogen carbonate under basic aqueous conditions provides access to various aliphatic, aromatic and heterocyclic nitriles in excellent yields with very high purity.
F.-E. Chen, Y.-Y. Li, M. Xu, H.-Q. Jia, Synthesis, 2002, 1804-1806.


The reagents poly(N,N'-dichloro-N-ethylbenzene-1,3-disulfonamide) (PCBS) and N,N,N',N'-tetrachlorobenzene-1,3-disulfonamide (TCBDA) allow the preparation of N,N-dichloroamines, nitriles, and aldehydes from primary amines. A direct oxidative conversion of primary alcohols into nitriles was successfully carried out in aqueous ammonia.
R. Ghorbani-Vaghei, H. Veisi, Synthesis, 2009, 945-950.


R. Ghorbani-Vaghei, H. Veisi, Synthesis, 2009, 945-950.


Various primary alcohols, and primary, secondary, and tertiary amines were efficiently converted into the corresponding nitriles in good yields by oxidation with 1,3-diiodo-5,5-dimethylhydantoin (DIH) in aqueous ammonia at 60 °C.
S. Iida, H. Togo, Synlett, 2007, 407-410.


A tandem TBAB-catalyzed substitution and a subsequent novel oxidative rearrangement allow the synthesis of aryl or alkenyl nitriles from from benzyl and allyl halides. The broad reaction scope and the mild conditions may make these methods of use in organic synthesis.
W. Zhou, J. Xu, L. Zhang, N. Jiao, Org. Lett., 2010, 12, 2888-2891.


S. Iida, H. Togo, Synlett, 2007, 407-410.


An efficient and highly selective method for the oxidative conversion of primary amines to the corresponding nitriles using trichloroisocyanuric acid in the presence of catalytic TEMPO provides a new entry to the synthesis of various aliphatic, aromatic and heterocyclic nitriles in excellent yield.
F.-E. Chen, Y.-Y. Kuang, H.-F. Dai, L. Lu, M. Huo, Synthesis, 2003, 2629-2631.


Ruthenium supported on alumina acts as an efficient heterogeneous catalyst for the oxidation of non-activated as well as activated amines to the corresponding nitriles or imines with 1 atm of dioxygen or air.
K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed., 2003, 42, 1480-1483.


In the presence of an easily prepared supported ruthenium hydroxide catalyst, Ru(OH)x/Al2O3, various primary azides including benzylic, allylic, and aliphatic ones could be converted into the corresponding nitriles in good yields. The Ru(OH)x/Al2O3 catalyst could be further employed for synthesis of amides in water from benzylic or aliphatic primary azides.
J. He, K. Yamaguchi, N. Mizuno, J. Org. Chem., 2011, 76, 4552-4553.


A direct conversion of various benzylic alkyl halides and primary alkyl halides into corresponding nitriles was efficiently and simply carried out in aqueous ammonia in the presence of molecular iodine as oxidant.
S. Iida, H. Togo, Synlett, 2008, 1639-1642.


S. Iida, H. Togo, Synlett, 2008, 1639-1642.


Among the reported examples of new reactivity of the hypervalent iodine reagent DMP (Dess-Martin periodinane) are the one-step oxidation of secondary amides to imides and N-acyl vinylogous carbamates or ureas and the direct oxidation of benzylic and related primary amines to the corresponding nitriles.
K. C. Nicolaou, C. J. N. Mathison, Angew. Chem. Int. Ed., 2005, 44, 5992-5997.


A convenient protocol for the catalytic dehydration of aromatic and aliphatic amides using silanes in the presence of catalytic amounts of fluoride allows the synthesis of a wide range of aliphatic and aromatic nitriles with high selectivity under mild conditions.
S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Org. Lett., 2009, 11, 2461-2464.


Propylphosphonic anhydride (T3P) is an efficient reagent for the transformation of aromatic, heteroaromatic, and aliphatic aldehydes to respective nitriles in excellent yields. This procedure offers simple and one-pot access to nitriles and highlights the synthetic utility of T3P as a versatile reagent in organic chemistry.
J. K. Augustine, R. N. Atta, B. K. Ramappa, C. Boodappa, Synlett, 2009, 3378-3382.


An ethyl dichlorophosphate/DBU-mediated dehydration of aldoxime intermediates from aldehydes enables a new and efficient one-pot conversion of various aldehydes into the corresponding nitriles under mild reaction conditions.
J.-L. Zhu, F.-Y. Lee, J.-D. Wu, C.-W. Kuo, K.-S. Shia, Synlett, 2007, 1317-1319.


Graphite promotes the conversion of aldehydes into nitriles in high yields.
H. Shargi, M. H. Sarvari, Synthesis, 2003, 243-246.


H. Shargi, M. H. Sarvari, Synthesis, 2003, 243-246.


Different ketoximes, which are prepared from the corresponding ketones, undergo the Beckmann rearrangement at room temperature in excellent yields upon treatment with 2,4,6-trichloro[1,3,5]triazine in N,N-dimethylformamide. Nitriles are obtained from aldoximes using the same procedure.
L. De Luca, G. Giacomelli, A. Porcheddu, J. Org. Chem., 2002, 67, 6272-6274.


Adsorbed [RuCl2(p-cymene)]2 on activated carbon is an efficient, environmentally attractive and highly selective catalyst for use in aerobic oxidations, hydrolytic oxidations and dehydrations. The heterogeneous catalyst was recovered quantitatively by simple filtration  and could be reused with minimal loss of activity.
E. Choi, C. Lee, Y. Na, S. Chang, Org. Lett., 2002, 4, 2369-2371.


An inexpensive homogeneous iron catalyst enables a direct approach to alkenyl nitriles from allylarenes or alkenes. Three C-H bond cleavages occur under the mild conditions during this process, involving the cleavage of the allyl C(sp3)-H bond as the rate-determining step.
C. Qin, N. Jiao, J. Am. Chem. Soc., 2010, 132, 15893-15895.


A hypervalent iodine reagent, (diacetoxyiodo)benzene, and catalytic amount of sodium azide in acetonitrile enable an oxidative decarboxylation of 2-aryl carboxylic acids into the corresponding aldehydes, ketones, and nitriles in good yields at room temperature. The advantages of this protocol are short reaction times and mild reaction conditions.
V. N. Telvekar, K. A. Sasane, Synlett, 2010, 2778-2779.


An efficient catalytic and highly enantioselective protonation of silyl ketene imines is catalyzed by the chiral phosphoric acids TRIP or STRIP in the presence of a stoichiometric amount of methanol as the proton source and silyl acceptor. Various substituted racemic silyl ketene imines have been transformed into highly enantioenriched nitriles.
J. Guin, G. Varseev, B. List, J. Am. Chem. Soc., 2013, 135, 2100-2103.


Various ketoximes undergo the Beckmann rearrangement when heated with 0.5 molar equiv. of chloral (hydrate) in the absence of solvents and acids. Yields of the corresponding amides were excellent after a simple work-up. Aromatic aldoximes were dehydrated to the corresponding nitriles in excellent yields under similar conditions.
S. Chandrasekhar, K. Gopalaiah, Tetrahedron Lett., 2003, 44, 755-756.


A novel and facile transformation of N,N-disubstituted glycylamides into corresponding cyanamides using pentavalent iodine reagents and tetraethylammonium bromide offers advantages such as use of non toxic reagents, shorter reaction times and good yields.
K. H. Chaudhari, U. S. Mahajan, D. S. Bhalerao, K. G. Akamanchi, Synlett, 2007, 2815-2818.


A convenient, environmentally friendly method for the synthesis of optically active aldoximes and nitriles starting from chiral nitroalkanes was developed.
C. Czekelius, E. M. Carreira, Angew. Chem. Int. Ed., 2005, 44, 612-615.