Monday, October 24, 2022
Douglass F. Taber
University of Delaware
Carbon-Carbon Bond Formation: The Fürstner Synthesis of Scabrolide A
Yasuharu Yoshimi of the University of Fukui devised a photocatalyst that efficiently promoted the coupling of the acid 1 with acrylonitrile 2, to give, with the net addition of two carbons, the nitrile 3 (J. Org. Chem. 2022, 87, 7405. DOI: 10.1021/acs.joc.2c00643). Kounosuke Oisaki and Motomu Kanai of the University of Tokyo added a germanium catalyst to promote the coupling of the primary amine 4 with methyl methacrylate 5, leading to the γ-lactam 6 (Org. Lett. 2022, 24, 3325. DOI: 10.1021/acs.orglett.2c00871). Julien C. Vantourout of the Université Lyon 1 showed that the coupling of the alkene 7 with the ketone 8 to give 9 could be driven by electrolysis, making the Mn(OAc)3 catalytic (J. Org. Chem. 2022, 87, 5690. DOI: 10.1021/acs.joc.2c00054). Takuya Suga and Yutaka Ukaji of Kanazawa University activated the alcohol 10 with the Ti complex 11, to give an intermediate that could be added in a conjugate sense to acrylonitrile 2, leading to the nitrile 12 (Angew. Chem. Int. Ed. 2022, 61, e202112533. DOI: 10.1002/anie.202112533).
Giovanni W. Amarante of the Federal University of Juiz de Fora and Fernando Coelho of the University of Campinas developed an improved protocol for the Morita-Baylis-Hillman coupling, allowing the assembly of the alcohol 15 by the addition of the enone 14 to the aldehyde 13 (Eur. J. Org. Chem. 2022, e202101448. DOI: 10.1002/ejoc.202101448). The late Robert H. Grubbs of Caltech developed a bulky Ru catalyst that effected the Z-selective cross metathesis of the acrylate 17 with the alkene 16, to give 18 (Angew. Chem. Int. Ed. 2022, 61, e202113089. DOI: 10.1002/anie.202113089). Ming Yan of Sun Yat-sen University devised the coupling with 20 and subsequent fragmentation that opened the carboxamide 19 to the alkene 21 (Org. Lett. 2022, 24, 536. DOI: 10.1021/acs.orglett.1c03952). Aaron D. Sadow of Iowa State University optimized the enyne metathesis of the alkyne 22 with ethylene to give the diene 23 (ACS Catal. 2022, 12, 226. DOI: 10.1021/acscatal.1c04074).
Shouyun Yu of Nanjing University coupled the glycosyl bromide 24 with the bromoalkyne 25 to give the C-alkynyl glycoside 26 (Org. Lett. 2022, 24, 364. DOI: 10.1021/acs.orglett.1c04041). Isaac J. Krauss of Brandeis University devised conditions for the non-epimerizing conversion of the aldehyde 27 with the Ohira reagent 28 to the alkyne 29 (J. Org. Chem. 2022, 87, 3841. DOI: 10.1021/acs.joc.1c03027).
Zhaobin Wang of Westlake University assembled the enantiomerically-enriched allene 32 by the addition of the racemic propargylic bromide 31 to the aldehyde 30 (Angew. Chem. Int. Ed. 2022, 61, e202117114. DOI: 10.1002/anie.202117114). Liang-Qiu Lu of Central China Normal University combined the enone 33 with the cyclic carbonate 34 to give the allene 35 (Angew. Chem. Int. Ed. 2022, 61, e202117215. DOI: 10.1002/anie.202117215).
Scabrolide A (39), isolated from the soft coral Sinularia scabra, inhibits both IL-6 and IL-12, and shows only moderate cyotoxicity. Alois Fürstner of the Max-Planck-Institut für Kohlenforschung devised a convergent route to 39, based on the coupling of the allylic chloride 36 with the sulfide 37 to give 38 (J. Am. Chem. Soc. 2022, 144, 1528. DOI: 10.1021/jacs.1c12401).
D. F. Taber, Org. Chem. Highlights 2022, October 24.
URL: https://www.organic-chemistry.org/Highlights/2022/24October.shtm