Organic Chemistry Portal
Organic Chemistry Highlights

Monday, October 16, 2023
Douglass F. Taber
University of Delaware

Heteroaromatics: The Zhu Synthesis of Anibamine B

Kegong Ji of the Northwest Agricultural & Forestry University used a Cu catalyst to cyclize the alkyne 1 to the furan 2 (Org. Chem. Front. 2023, 10, 767. DOI: 10.1039/D2QO01741E). Zhen Yang of Shaozing University and Huaiji Zheng, also of the Northwest Agricultural & Forestry University, used a gold/silver catalyst combination to cyclize the alkyne 3 to the furan 4 (J. Org. Chem. 2023, 88, 6918. DOI: 10.1021/acs.joc.3c00216).

Haiyan Fu and Hua Chen of Sichuan University rearranged the pyridinium salt 5 to the pyrrole 6 (J. Org. Chem. 2023, 88, 2809. DOI: 10.1021/acs.joc.2c02472). Yu Yuan and Xiaodong Jia of Yangzhou University oxidized the pyrrolidine 7 to the 4-bromopyrrole 8 (Chem. Eur. J. 2023, 29, e202203654. DOI: 10.1002/chem.202203654).

Laurel L. Schafer of the University of British Columbia assembled the pyridine 11 by combining the alkyne 9 with the unsaturated aldehyde 10 (J. Org. Chem. 2023, 88, 1378. DOI: 10.1021/acs.joc.2c02155). Satoshi Ueno of the Tokyo University of Technology and Ryoichi Kuwano of Kyushu University added the enamine 13 to the ketone 12 to give the pyridine 14 (Chem. Lett. 2023, 52, 148. DOI: 10.1246/cl.220546). Miroslav Soural of Palacky University rearranged the resin-bound sulfonamide 15 to an intermediate that on spontaneous oxidation and release from the resin led to the pyridine 16 (J. Org. Chem. 2023, 88, 3228. DOI: 10.1021/acs.joc.2c03025). Sanghee Kim of Seoul National University prepared the pyridinium salt 19 by combining the alkyne 17 with the aldehyde 18 (Chem. Eur. J. 2023, 29, e202300059. DOI: 10.1002/chem.202300059).

Jianyou Mao of Nanjin Tech University, Jinlin Zhang and Lai Chen of Hebei Agricultural University, and Patrick J. Walsh of the University of Pennsylvania assembled the indole 22 by adding the anion derived from 20 to the nitrile 21 (J. Org. Chem. 2023, 88, 5147. DOI: 10.1021/acs.joc.2c02128). Qi-Xiang Guo of Southwest University achieved substantial enantioselectivity in the assembly of the indole 25 by the coupling of the allene 23 with the β-amino ester 24 (Org. Lett. 2023, 25, 3163. DOI: 10.1021/acs.orglett.3c01119). Kiyosei Takasu and Hiroshi Takikawa of Kyoto University showed that the benzyne derived from 26 added to the pendant alkyne, leading to the indole 27 (Angew. Chem. Int. Ed. 2023, 62, e202300907. DOI: 10.1002/anie.202300907). Fabien Gagosz of the University of Ottawa achieved high diastereoselectivity in the C-H insertion route that converted the azido alkyne 28 to the indole 29 (Angew. Chem. Int. Ed. 2023, 62, e202212893. DOI: 10.1002/anie.202212893). Hiroaki Ohno, also of Kyoto University, reported related results (Angew. Chem. Int. Ed. 2023, 62, e202213653. DOI: 10.1002/anie.202213653).

Anibamine B (33), isolated from the neotropical tree Aniba sp., shows potential activity vs. ovarian cancer. Jieping Zhu of the Ecole Polytechnique Fédérale de Lausanne prepared the central pyridine 32 by the Cu-catalyzed addition of the oxime acetate 30 to the alkyne 31 (Angew. Chem. Int. Ed. 2023, 63, e202303537. DOI: 10.1002/anie.202303537).

D. F. Taber, Org. Chem. Highlights 2023, October 16.
URL: https://www.organic-chemistry.org/Highlights/2023/16October.shtm