Monday, February 12, 2024
Douglass F. Taber
University of Delaware
Enantioselective Synthesis of Alcohols and Amines: The Lin/Liu Route to Haliclamide
Benjamin List of the Max-Planck-Institut für Kohlenforschung used a confined imidodiphosphorimidate to catalyze the cyclization of the unsaturated acid 1 to the lactone 2 (J. Am. Chem. Soc. 2023, 145, 8788. DOI: 10.1021/jacs.3c01404). Nicolai Cramer of the Ecole Polytechnique Fédérale de Lausanne catalyzed the rearrangement of the N-sulfinyl acrylamide 3 to the α-hydroxy amide 4 with a 1,3,2-diazaphospholene (Angew. Chem. Int. Ed. 2023, 62, e202301076. DOI: 10.1002/anie.202301076). Chong-Dao Lu of Yunnan University described a related route to α-amino amides (Org. Lett. 2023, 25, 4156. DOI: 10.1021/acs.orglett.3c01448). Nilanjana Majumdar of CSIR-Central Drug Research Institute assembled the ester 6 by coupling the activated cyclopropane 5 with benzoic acid (ACS Catal. 2023, 13, 6261. DOI: 10.1021/acscatal.3c00959). Xi Lu and Yao Fu of the University of Science and Technology of China developed conditions for isomerizing the alkene of 7 into conjugation with the ether oxygen, then coupling the resulting enol ether with the iodide 8 to give 9 (J. Am. Chem. Soc. 2023, 145, 10411. DOI: 10.1021/jacs.3c02950).
Tao Xu of Tongji University used a Ni catalyst to couple the iodide 11 with the racemic α-chloroboronate 10, leading to the secondary organoboronate 12 in high ee (J. Am. Chem. Soc. 2023, 145, 2081. DOI: 10.1021/jacs.2c13220). Alicia Maestro and José M. Andrés of the Universidad de Valladolid assembled the lactone 15 by NHC-catalyzed [3 + 2]-asymmetric annulation of the β-bromoenal 13 with the 1H-pyrazolo-4,5-dione 14 (J. Org. Chem. 2023, 88, 6890. DOI: 10.1021/acs.joc.3c00188).
Zhenfeng Zhang and Wanbin Zhang of Shanghai Jiao Tong University hydrogenated the enamide 16 to the Z-allylic amide 17 (Angew. Chem. Int. Ed. 2023, 62, e202217871. DOI: 10.1002/anie.202217871). Shigeki Matsunaga of Hokkaido University prepared the sulfonamide 20 by aminating the silyl enol ether 18 with the nitrene precursor 19 (Org. Lett. 2023, 25, 3234. DOI: 10.1021/acs.orglett.3c00940).
Todd K. Hyster of Cornell University used an enzymatic photoredox catalyst to mediate the coupling of the nitroalkane 21 with the α-chloro amide 22, leading to the nitro amide 23 (J. Am. Chem. Soc. 2023, 145, 787. DOI: 10.1021/jacs.2c12197). Chao Wang and Zhaoqing Xu of Lanzhou University prepared the nitrile 26 by coupling the cyclobutanone oxime ester 25 with the glycinate 24 (Nature Commun. 2023, 14, 3295. DOI: 10.1038/s41467-023-38871-1). Guoqin Xia of the Shanghai Institute of Materia Medica, Huicai Huang of the Guangzhou University of Chinese Medicine and Zhaodong Li of the Shanghai Institute of Organic Chemistry prepared the amide 29 by adding the iodide 28 to the enamide 27 (Org. Lett. 2023, 25, 2218. DOI: 10.1021/acs.orglett.3c00357). Lihua Huang and Guang-Jian Mei of Zhengzhou University used a chiral phosphoric acid to construct the 4-pyrrolin-2-one 32 by adding the azlactone 30 to the azoalkene 31 (Chem. Commun. 2023, 59, 5902. DOI: 10.1039/D3CC01194A).
Haliclamide (35), isolated from a Vanuatu marine sponge, Haliclona sp., exhibited in vitro antitumor activity against human bronchopulmonary non-small-cell-lung-carcinoma lines. Zhenyang Lin of the Hong Kong University of Science and Technology and Guosheng Liu of the Shanghai Institute of Organic Chemistry developed the enantioselective conversion of (Z)-4-octene (33) to the diacetate 34, a direct precursor to 35 (Nature Chem. 2023, 15, 862. DOI: 10.1038/s41557-023-01192-3).
D. F. Taber, Org. Chem. Highlights 2024, February 12.
URL: https://www.organic-chemistry.org/Highlights/2024/12February.shtm