Organic Chemistry Portal
Chemicals >> Reducing Agents > Silanes

Dimethoxymethylsilane, DMMS

see also: diethoxymethylsilane


Recent Literature


A copper hydride-catalyzed enantioselective reduction of α,β-unsaturated carboxylic acids provides various saturated β-chiral aldehydes in good yields, with high levels of enantioselectivity and broad functional group tolerance. A reaction pathway involving a ketene intermediate is proposed.
Y. Zhou, J. S. Bandar, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc., 2018, 140, 606-609.


A copper hydride-catalyzed enantioselective reduction of α,β-unsaturated carboxylic acids provides various saturated β-chiral aldehydes in good yields, with high levels of enantioselectivity and broad functional group tolerance. A reaction pathway involving a ketene intermediate is proposed.
Y. Zhou, J. S. Bandar, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc., 2018, 140, 606-609.


A direct asymmetric copper hydride (CuH)-catalyzed coupling of α,β-unsaturated carboxylic acids with aryl alkenes provides chiral α-aryl dialkyl ketones. The reaction tolerates various substrate substitution patterns, sensitive functional groups, and heterocycles.
Y. Zhou, J. S. Bandar, S. L. Buchwald, J. Am. Chem. Soc., 2017, 139, 8126-8129.


The combination of allene gas with inexpensive and environmentally benign hydrosilanes enables enantioselective ketone allylation reactions without stoichiometric quantities of an allylmetal reagent. This process is catalyzed by copper salts and commercially available ligands, operates without specialized equipment or pressurization, and tolerates a broad range of functional groups.
R. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc., 2019, 141, 2251-2256.


A copper-hydride-catalyzed silylative dehydration of primary amides is an economical approach to the synthesis of nitriles. The reaction avoids a typically challenging 1,2-siloxane elimination step, proceeds at ambient temperature, and tolerates a variety of metal-, acid-, or base-sensitive functional groups.
R. Y. Liu, M. Bae, S. L. Buchwald, J. Am. Chem. Soc., 2018, 140, 1627-1631.


In a direct route for the synthesis of alkyl-substituted chiral aziridines from achiral starting materials, readily accessed allylic hydroxylamine esters undergo copper hydride-catalyzed intramolecular hydroamination with a high degree of regio- and enantiocontrol to afford the aziridine products in good to excellent yields in highly enantioenriched form.
H. Wang, J. C. Yang, S. L. Buchwald, J. Am. Chem. Soc., 2017, 139, 8428-8431.


The use of 1,2-benzisoxazole as a practical electrophilic primary amine source enables a mild and general copper-hydride-catalyzed hydroamination of alkenes and alkynes to form primary amines. This method provides access to a broad range of chiral α-branched primary amines and linear primary amines.
S. Guo, J. C. Yang, S. L. Buchwald, J. Am. Chem. Soc., 2018, 140, 15976-15984.


A copper hydride-catalyzed, enantioselective, intramolecular hydroalkylation of halide-tethered styrenes enables the synthesis of enantioenriched cyclobutanes, cyclopentanes, indanes, and six-membered N- and O-heterocycles.
Y.-M. Wang, N. C. Bruno, A. L. Placeres, S. Zhu, S. L. Buchwald, J. Am. Chem. Soc., 2015, 137, 10524-10527.