Organic Chemistry Portal
Chemicals >> Reducing Agents


Recent Literature

The reduction of ketones with pinacolborane is catalyzed by NaOt-Bu at ambient temperature. The reaction is high yielding and general, providing complete conversion of aryl and dialkyl ketones. The active hydride source is the trialkoxyborohydride, which is believed to be present in low concentration under the reaction conditions.
I. P. Query, P. A. Squier, E. M. Larson, N. A. Isley, T. B. Clark, J. Org. Chem., 2011, 76, 6452-6456.

Small amounts of n-BuLi catalyze a highly efficient and selective hydroboration of aldehydes and ketones with HBpin. The reaction proceeds rapidly under mild conditions with exceptional functional group compatibility, ample substrate scope, and high selectivity for aldehydes over ketones.
Z. Zhu, X. Wu, X. Xu,  Z. Wu, M. Xue, Y. Yao, Q. Shen, X. Bao, J. Org. Chem., 2018, 83, 10677-10683.

A nonanuclear copper(II) complex obtained by a facile one-pot self-assembly catalyzes the hydroboration of ketones and aldehydes with the absence of an activator under mild, solvent-free conditions. The air- and moisture-stable catalyst displays high efficiency and chemoselectivity on aldehydes over ketones and ketones over imines.
H. Zeng, J. Wu, S. Li, C. Hui, A. Ta, S.-Y. Cheng, S. Zheng, G. Zhang, Org. Lett., 2019, 21, 401-406.

A recyclable cobalt(II)-terpyridine coordination polymer (CP) is a highly effective hydroboration precatalyst for reductions of ketones, aldehydes, and imines with pinacolborane (HBpin). A wide range of substrates containing polar C=O or C=N bonds have been hydroborated selectively in excellent yields under ambient conditions.
J. Wu, H. Zeng, J. Cheng, S. Zheng, J. A. Golen, D. R. Manke, G. Zhang, J. Org. Chem., 2018, 83, 9442-9448.

Homoleptic cyclopentadienyl lanthanide complexes are excellent catalysts for the hydroboration of various aldehydes and ketones with pinacolborane. These robust lanthanide catalysts exhibited high reactivity with low catalyst loadings under mild conditions, good functional group tolerability, and unique carbonyl-selectivity.
S. Chen, D. Yan, M. Xue, Y. Hong, Y. Yao, Q. Shen, Org. Lett., 2017, 19, 3382-3385.

Chemoselective Luche-Type Reduction of α,β-Unsaturated Ketones by Magnesium Catalysis
Y. K. Jang, M. Magre, M. Rueping, Org. Lett., 2019, 21, 8349-8352.

An operationally convenient hydroboration of aldehydes and ketones employing Fe(acac)3 as precatalyst proceeded efficiently at room temperature to yield, after work up, 1 and 2 alcohols. A σ-bond metathesis mechanism with an Fe-H intermediate as key reactive species is postulated.
S. R. Tamang, M. Findlater, J. Org. Chem., 2017, 82, 12857-12862.

A manganese-catalyzed chemoselective hydroboration of carboxylic acids to the corresponding alcohols offers a high turnover number and turnover frequency at 25C. This method tolerates electronically and sterically differentiated substrates with high chemoselectivity. Importantly, aliphatic long-chain fatty acids, including biomass-derived compounds, can efficiently be reduced.
M. K. Barman, K. Das, B. Maji, J. Org. Chem., 2019, 84, 1570-1579.

A copper-catalyzed enantioselective hydroboration of α,β-unsaturated aldehydes with pinacolborane provides the corresponding γ-pinacolboronate alcohols in good yields and enantioselectivities through consecutive hydroboration of the C=O and C=C bonds. The resulting γ-pinacolboronate alcohols could be utilized in various transformations.
W. J. Jang, S. M. Song, Y. Park, J. Yun, J. Org. Chem., 2019, 84, 4429-4434.

A simple [Ru(p-cymene)Cl2]2 complex is used as a catalyst precursor in a catalyzed hydroboration of nitriles and imines using pinacolborane with unprecedented catalytic efficiency.
A. Kaithal, B. Chatterjee, C. Gunanathan, J. Org. Chem., 2016, 81, 11153-11161.

1,2,4,3-triazaphospholenes halides catalyze the 1,2 hydroboration of imines and α,β unsaturated aldehydes with pinacolborane, including examples that did not undergo hydroboration by previously reported diazaphospholene systems. DFT calculations support a mechanism where a triazaphospholene cation interacts with the substrate.
C.-H. Tien, M. R. Adams, M. J. Ferguson, E. R. Johnson, A. W. H. Speed, Org. Lett., 2017, 19, 5565-5568.

A simple [Ru(p-cymene)Cl2]2 complex is used as a catalyst precursor in a catalyzed hydroboration of nitriles and imines using pinacolborane with unprecedented catalytic efficiency.
A. Kaithal, B. Chatterjee, C. Gunanathan, J. Org. Chem., 2016, 81, 11153-11161.

A reductive three-component coupling of terminal alkynes, aryl halides, and pinacolborane provides benzylic alkyl boronates in good yields via a hydrofunctionalization of both π-bonds of the alkyne promoted by cooperative action of the catalysts. The reaction offers excellent substrate scope and tolerates the presence of esters, nitriles, alkyl halides, epoxides, acetals and alkenes.
M. K. Armstrong, G. Lalic, J. Am. Chem. Soc., 2019, 141, 6173-6179.