Further Information
Literature
Related Reactions
Buchwald-Hartwig Cross Coupling
Ullmann
Reaction
Synthesis of
arylamines
Synthesis of diarylethers
Chan-Lam Coupling
This reaction allows aryl carbon-heteroatom bond formation via an oxidative coupling of boronic acids, stannanes or siloxanes with N-H or O-H containing compounds in air. Substrates include phenols, amines, anilines, amides, imides, ureas, carbamates, and sulfonamides. The reaction is induced by a stoichiometric amount of copper(II) or a catalytic amount of copper catalyst which is reoxidized by atmospheric oxygen or another primary oxidant.
The Chan-Lam Coupling may be conducted at room temperature in air, which gives it a certain advantage over the Buchwald-Hartwig Cross Coupling.
Mechanism of the Chan-Lam Coupling
The reaction with a stoichiometric amount of copper(II) is also facilitated by oxygen, because reductive elimination from a copper(III) species is faster.
Recent Literature
Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired
Solution to Boronic Ester Reactivity
J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules, A. J. B. Watson, J. Am. Chem. Soc., 2017,
139, 4769-4779.
Ligand- and Base-Free Copper(II)-Catalyzed C-N Bond Formation:
Cross-Coupling Reactions of Organoboron Compounds with Aliphatic Amines and
Anilines
T. D. Quach, R. A. Batey, Org. Lett., 2003, 5, 4397-4400.
Copper(II) acetate catalyzes a coupling of arylboronic acids and amines in
the presence of 2,6-lutidine as base, and myristic acid as an additive.
Functionalized aniline substrates provided diarylamine coupling products in good
yield, whereas alkylamines gave N-alkyl anilines in moderate yield.
J. C. Antilla, S. L. Buchwald,
Org. Lett., 2001, 3, 2077-2079.
Copper(II)-Catalyzed Ether Synthesis from Aliphatic Alcohols and Potassium
Organotrifluoroborate Salts
T. D. Quach, R. A. Batey, Org. Lett., 2003, 5, 1381-1384.
A Cu-catalyzed nondecarboxylative methylation of carboxylic acids with
methylboronic acid proceeds in air as sole oxidant and offers a strategy for
replacing toxic, electrophilic alkylating reagents. An isotope-labeling study
supports an oxidative cross-coupling mechanism, in analogy to that proposed for
Chan-Lam arylation.
C. E. Jacobson, N. Martinez-Muńoz, D. J. Gorin, J. Org. Chem.,
2015,
80, 7305-7310.
Copper-Catalyzed N- and O-Alkylation of Amines and Phenols using
Alkylborane Reagents
S. Sueki, Y. Kuninobu, Org. Lett., 2013,
15, 1544-1547.
Chan-Evans-Lam Amination of Boronic Acid Pinacol (BPin) Esters: Overcoming
the Aryl Amine Problem
J. C. Vantourout, R. P. Law, A. Isidro-Llobet, S. J. Atkinson, A. J. B. Watson, J. Org. Chem.,
2016,
81, 3942-3950.
Selective Formation of Secondary Amides via the Copper-Catalyzed
Cross-Coupling of Alkylboronic Acids with Primary Amides
S. A. Rossi, K. W. Shimkin, Q. Xu, L. M. Mori-Quiroz, D. A. Watson, Org. Lett., 2013,
15, 2314-2317.
An Efficient Base-Free N-Arylation of Imidazoles and Amines with Arylboronic
Acids Using Copper-Exchanged Fluorapatite
M. L. Kantam, G. T. Venkanna, C. Sridhar, B. Sreedhar, B. M. Choudary, J. Org. Chem., 2006,
71, 9522-9524.
Nickel-Mediated N-Arylation with Arylboronic Acids: An Avenue to Chan-Lam
Coupling
D. S. Raghuvanshi, A. K. Gupta, K. N. Singh, Org. Lett., 2012,
14, 4326-4329.
Chan-Lam Amination of Secondary and Tertiary Benzylic Boronic Esters
J. D. Grayson, F. M. Dennis, C. C. Robertson, B. M. Partridge, J. Org. Chem., 2021, 86,
9883-9897.
Synthesis of N-Aryl Amides by Ligand-Free Copper-Catalyzed ipso-Amidation
of Arylboronic Acids with Nitriles
Y. Qiao, G. Li, S. Liu, Y. Yangkai, J. Tu, F. Xu, Synthesis, 2017,
49, 1834-1838.
A Synthetic Approach to N-Aryl Carbamates via Copper-Catalyzed
Chan-Lam Coupling at Room Temperature
S.-Y. Moon, U. Bin Kim, D.-B. Sung, W.-S. Kim, J. Org. Chem.,
2015,
80, 1856-1865.
Microwave-assisted conditions enabled a simple, rapid, one-pot synthesis of
arylaminomethyl acetylenes in very good yields using arylboronic acids, aqueous
ammonia, propargyl halides, copper(I) oxide and water as the solvent within ten
minutes.
Y. Jiang, S. Huang, Synlett, 2014, 25,
407-410.
Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols
with Arylboronic Acids. An Expedient Synthesis of Thyroxine
D. A. Evans, J. L. Katz, T. R. West, Tetrahedron Letters, 1998,
39, 2937-2940.
Cu(OTf)2-Mediated Chan-Lam Reaction of Carboxylic Acids to Access Phenolic
Esters
L. Zhang, G. Zhang, M. Zhang, J. Cheng, J. Org. Chem., 2010,
75, 7472-7474.
Copper-Catalyzed Formamidation of Arylboronic Acids: Direct Access to
Formanilides
V. P. Srivastava, D. K. Yadav, A. K. Yadav, G. Watal, L. D. S. Yadav, Synlett, 2013, 24,
1423-1427.
Copper-Catalyzed N-Arylation of Sulfonamides with Boronic Acids in Water
under Ligand-Free and Aerobic Conditions
M. Nasrollahzadeh, A. Ehsani, M. Maham, Synlett, 2014, 25,
505-508.
Copper-Catalyzed Chan-Lam Coupling between Sulfonyl Azides and Boronic Acids
at Room Temperature
S.-Y. Moon, J. Nam, K. Rathwell, W.-S. Kim, Org. Lett., 2014,
16, 338-339.
Copper-Catalyzed Nondecarboxylative Cross Coupling of Alkenyltrifluoroborate
Salts with Carboxylic Acids or Carboxylates: Synthesis of Enol Esters
F. Huang, T. D. Quach, R. A. Batey, Org. Lett., 2013,
15, 3058-3061.
Copper-Promoted Coupling of Vinyl Boronates and Alcohols: A Mild Synthesis
of Allyl Vinyl Ethers
R. E. Shade, A. M. Hyde, J.-C. Olsen, C. A. Merlic, J. Am. Chem. Soc., 2010,
132, 1202-1203.
Copper-Catalyzed Oxidative Acetalization of Boronic Esters: An Umpolung
Strategy for Cyclic Acetal Synthesis
E. M. Miller, M. A. Walczak, J. Org. Chem., 2020, 85,
8230-8239.
New N- and O-arylations with phenylboronic acids and cupric acetate
D. M. T. Chan, K. L. Monaco, R.-P. Wang, M. P. Winteres, Tetrahedron Lett.,
1998, 39, 2933-2936.
Selective Monomethylation of Anilines by Cu(OAc)2-Promoted Cross-Coupling
with MeB(OH)2
I. González, J. Mosquera, C. Guerrero, R. Rodríguez, Jacobo Cruces, Org. Lett., 2009,
11, 1677-1680.
Selective Copper-Promoted Cross-Coupling of Aromatic Amines with Alkyl
Boronic Acids
M. Larrosa, C. Guerrero, R. Rodríguez, J. Cruces, Synlett, 2010,
2101-2105.
Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates,
and Trifluoroborates into the Corresponding Azides: Substrate Scope and
Limitations
K. D. Grimes, A. Gupte, C. C. Aldrich, Synthesis, 2010,
1441-1448.
Chan-Lam-Type S-Arylation of Thiols with Boronic Acids at Room Temperature
H.-J. Xu, Y.-Q. Zhao, T. Feng, Y.-S. Feng, J. Org. Chem., 2012,
77, 2649-2658.
An Efficient Copper-Catalyzed One-Pot Synthesis of Diaryl Thioethers by
Coupling of Arylboronic Acids with Potassium Ethyl Xanthogenate under Mild
Conditions
L. Wang, W.-Y. Zhou, S.-C. Chen, M.-Y. He, Q. Chen, Synlett, 2011,
3041-3045.
Chan-Lam-Type C-S Coupling Reaction by Sodium Aryl Sulfinates and
Organoboron Compounds
L. Y. Lam, C. Ma, Org. Lett., 2021, 23,
6164-6168.
Copper-Mediated Cross-Coupling of Aryl Boronic Acids and Alkyl Thiols
P. S. Herradura, K. A. Pendola, R. K. Guy,
Org. Lett., 2000, 2, 2019-2022.
Chan-Lam-Type C-S Coupling Reaction by Sodium Aryl Sulfinates and
Organoboron Compounds
L. Y. Lam, C. Ma, Org. Lett., 2021, 23,
6164-6168.
A cross-coupling reaction of arylboronic acids with KSCN salt to yield aryl
thiocyanates is catalyzed by copper acetate in the presence of 4-methylpyridine
serving both as ligand and base under 0.2 MPa of molecular oxygen. Various
arylboronic acids were suitable under the reaction conditions.
N. Sun, H. Zhang, W. Mo, B. Hu, Z. Shen, X. Hu, Synlett, 2013, 24,
1443-1447.
Copper-Mediated Coupling of Boronic Acids, Amines, and Carbon Disulfide: An
Approach to Organic Dithiocarbamates
C. Qi, T. Guo, W. Xiong,
Synlett, 2016, 27, 2626-2630.
Copper-Catalyzed N-Arylation of Sulfoximines with Arylboronic Acids
under Mild Conditions
S. Gupta, S. Baranwal, N. Muniyappan, S. Sabiah, J. Kandasamy, Synthesis, 2019, 51,
2171-2182.
Biomolecule-Compatible Dehydrogenative Chan-Lam Coupling of Free
Sulfilimines
T. Meng, L. A. Wells, T. Wang, J. Wang, S. Zhang, J. Wang, M. C. Kozlowski,
T. Jia, J. Am. Chem. Soc.,
2022, 144, 12476-12487.
Sulfur-Arylation of Sulfenamides via Chan-Lam Coupling with Boronic Acids:
Access to High Oxidation State Sulfur Pharmacophores
N. S. Greenwood, J. A. Ellman, Org. Lett., 2023, 25,
2830-2834.
Copper-Catalyzed C-P Bond Construction via Direct Coupling of Phenylboronic
Acids with H-Phosphonate Diesters
R. Zhuang, J. Xu, Z. Cai, G. Tang, M. Fang, Y. Zhao, Org. Lett., 2011,
13, 2110-2113.
Copper(I) Oxide Catalyzed N-Arylation of Azoles and Amines with Arylboronic
Acid at Room Temperature under Base-Free Conditions
B. Sreedhar, G. T. Venkanna, K. B. S. Kumar, V. Balasubrahmanyam, Synthesis, 2008,
795-799.
An Efficient DiamineˇCopper Complex-Catalyzed Coupling of Arylboronic Acids
with Imidazoles
J. P. Collman, M. Zhong,
Org. Lett., 2000, 2, 1233-1236.
New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric
acetate arylation
P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan,
A. Combs, Tetrahedron Lett.,
1998, 39, 2941-2944.
Comparison of Copper(II) Acetate Promoted N-Arylation of 5,5-Dimethyl
Hydantoin and Other Imides with Triarylbismuthanes and Aryl Boronic Acids
H. M. Hügel, C. J. Rix, K. Fleck, Synlett, 2006,
2290-2292.
CuF2/MeOH-Catalyzed N3-Selective Chan-Lam Coupling of
Hydantoins: Method and Mechanistic Insight
T. Roy, K. Mondal, A. Sengupta, P. Das, J. Org. Chem., 2023, 88,
6058-6070.
One-Pot Approach to 1,2-Disubstituted Indoles via Cu(II)-Catalyzed
Coupling/Cyclization under Aerobic Conditions and Its Application for the
Synthesis of Polycyclic Indoles
J. Gao, Y. Shao, J. Zhu, H. Mao, X. Wang, X. Lv, J. Org. Chem., 2014,
79, 9000-9008.
One-Pot, Multistep Reactions for the Modular Synthesis of N,N'-Diarylindazol-3-ones
S. Liu, L. Xu, Y. Wei, J. Org. Chem., 2019, 84,
1596-1604.
Concise Synthesis of N-Aryl Tetrahydroquinolines via a One-Pot
Sequential Reduction of Quinoline/Chan-Evans-Lam Coupling Reaction
D. Bhattacharyya, S. K. Senapati, A. Das, Synlett, 2023,
34,
651-656.
Copper-Catalyzed Reactions of Alkenyl Boronic Esters via Chan-Evans-Lam
Coupling/Annulation Cascades: Substrate Selective Synthesis of
Dihydroquinazolin-4-ones and Polysubstituted Quinolines
Y. Li, Z. Cao, Z. Wang, L. Xu, Y. Wei, Org. Lett.,
2022, 24, 6554-6559.