Organic Chemistry Portal >
Reactions > Organic Synthesis Search

Categories: C-Br Bond Formation >

Synthesis of vinyl bromides


Recent Literature

Organotrifluoroborates are rapidly and regioselectively converted into organic bromides in excellent yields under mild conditions, using sodium bromide in the presence of chloramine-T.
G. W. Kabalka, A. R. Mereddy, Organometallics, 2004, 23, 4519-4521.

The use of catalytic amounts of copper iodide and trans-N,N′-dimethylcyclohexane-1,2-diamine in the presence of tetramethylammonium chloride or bromide enables the transformation of easily accessible alkenyl iodides into their far less available chlorinated and brominated derivatives in excellent yields and with full retention of the double bond geometry.
A. Nitelet, G. Evano, Org. Lett., 2016, 18, 1904-1907.

Application of (PhO)3P-halogen-based reagents allows the preparation of vinyl halides in good to excellent yields from enolizable ketones, whereas aldehydes afforded the corresponding gem-dihalides. The halogenation proceeded smoothly under mild conditions.
A. Spaggiari, D. Vaccari, P. Davoli, G. Torre, F. Prati, J. Org. Chem., 2007, 72, 2216-2219.

Trapping of a diazo species in an intermolecular fashion by two independent ion species in tandem at the carbene center installs an electrophile and a nucleophile on the same carbon. This metal-free concept enables regioselective syntheses of various vinyl halides, vinyl sulfones, and alkyne derivatives.
D. P. Ojha, K. R. Prabhu, Org. Lett., 2015, 17, 18-21.

A catalytic anti-Markovnikov hydrobromination of aryl- and alkyl-substituted terminal alkynes affords terminal E-alkenyl bromides in high yield and with excellent regio- and diastereoselectivity. The reaction conditions are compatible with a wide range of functional groups, including esters, nitriles, epoxides, aryl boronic esters, terminal alkenes, silyl ethers, aryl halides, and alkyl halides.
M. R. Uehling, R. P. Rucker, G. Lalic, J. Am. Chem. Soc., 2014, 136, 8799-8803.

A ruthenium-catalyzed regioselective hydrohalogenation reaction of alkynes provides Markovnikov products under mild conditions using simple halogen sources such as KI, ZnBr2, and ZnCl2. Alkynes derived from bioactive molecules such as l-(-)-borneol, l-menthol, and estrone were also suitable for the transformation, demonstrating the potential synthetic value of this method.
Y. Bai, Z. Lin, Z. Ye, D. Dong, J. Wang, L. Chen, F. Xie, Y. Li, P. H. Dixneuf, M. Zhang, Org. Lett., 2022, 24, 7988-7992.

Reliable, operationally simple, catalytic α-selective hydroalumination reactions proceed in the presence of diisobutylaluminum hydride and (Ni(dppp)Cl2), and, unlike uncatalyzed transformations, generate little or no alkynylaluminum byproducts. The derived α-vinyl halides and boronates can be synthesized through direct treatment with the appropriate electrophiles.
F. Gao, A. H. Hoveyda, J. Am. Chem. Soc., 2010, 132, 10961-10963.

β-Oxido phosphonium ylides, generated in situ from aldehydes and Wittig reagents react readily with electrophilic halogen sources to form predominantly or exclusively E-bromo- or iodosubstituted alkenes. The stereochemical outcome on halogenation is remarkably sensitive to alkylidene size [ethylidene(triphenyl)phosphorane is highly Z-selective].
D. M. Hodgson, T. Arif, J. Am. Chem. Soc., 2008, 130, 16500-16501.

An efficient protocol for a highly stereoselective one-pot synthesis of (E)-β-aryl vinyl iodides and (E)-β-aryl vinyl bromides from styrenes is based on a ruthenium-catalyzed silylative coupling followed by a N-halosuccinimide-mediated halodesilylation reaction.
P. Pawluć, G. Hreczycho, J. Szudkowska, M. Kubicki, B. Marciniec, Org. Lett., 2009, 11, 3390-3393.

(E)-β-Arylvinyl bromides were readily prepared in a short reaction time (1-2 min) by microwave irradiation of the corresponding 3-arylpropenoic acids in the presence of N-bromosuccinimide and a catalytic amount of lithium acetate.
C. Kuang, Q. Yang, H. Senboku, M. Tokuda, Synthesis, 2005, 1319-1325.

Using triethylamine as catalyst in Hunsdiecker reactions with N-halosuccinimides as Br+ or I+ source, cinnamic acids, and propiolic acids are converted to the corresponding α-halostyrenes and 1-halo-1-alkynes in good isolated yields within 1-5 min.
J. Prakash, S. Roy, J. Org. Chem., 2002, 67, 7861-7864.

Oxidative bromination of different types of olefins using Selectfluor/KBr afforded addition, monobromo-substituted, or Hunsdiecker-Borodin reaction products in good yields.
C. Ye, J. M. Shreeve, J. Org. Chem., 2004, 69, 8561-8563.

Aryl triflates were simply transformed to aryl bromides or iodides in the presence of LiBr or NaI and [Cp*Ru(MeCN)3]OTf as catalyst. A similar transformation of alkenyl sulfonates and phosphates can be conducted under mild conditions to provide the corresponding halides.
Y. Imazaki, E. Shirakawa, R. Ueno, T. Hayashi, J. Am. Chem. Soc., 2012, 134, 14760-14761.

A facile Pd-catalyzed conversion of aryl and vinyl triflates allows convenient access to various aryl, heteroaryl, and vinyl halides in good to excellent yields and with greatly simplified conditions relative to our previous report.
J. Pan, X. Wang, Y. Zhang, S. L. Buchwald, Org. Lett., 2011, 13, 4974-4976.

A chemoselective DBU-promoted elimination of vicinal dibromoalkanes having an adjacent O-functional group enables an efficient one-pot method for bromination-elimination of allyl alcohol derivatives to give 2-bromo allyl alcohol derivatives. Moreover, an efficient one-pot method for Sonogashira coupling was also achieved.
N. Kutsumura, K. Niwa, T. Saito, Org. Lett., 2010, 12, 3316-3319.

Ruthenium(III) acetate catalyzes a regioselective synthesis of (E)-2-bromo-1-phenylvinyl trifluoromethanesulfonates through alkyne difunctionalization in the presence of N-bromosuccinimide (NBS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf). The protocol tolerates a broad range of functional groups.
L. Chen, Y. Li, X. Bai, D. Dong, M. Pan, L. Huang, R. Huang, X. Long, Y. Li, Org. Lett., 2023, 25, 7025-7029.

The use of easy to handle DMPU/HX (X = Br or Cl) reagents enables an atom-economical and metal-free method for the regio- and stereo-selective hydrohalogenation of ynones and ynamides under mild conditions. The reaction tolerates a wide range of functional groups.
X. Zeng, Z. Lu, S. Liu, G. B. Hammond, B. Xu, J. Org. Chem., 2017, 82, 13179-13187.

An efficient synthesis of α-iodo/bromo-α,β-unsaturated aldehydes/ketones directly from propargylic alcohols is catalyzed collaboratively by Ph3PAuNTf2 and MoO2(acac)2, and Ph3PO as an additive helps suppress undesired enone/enal formation. Notable features of this method include low catalyst loadings, mild reaction conditions, and mostly good diastereoselectivity.
L. Ye, L. Zhang, Org. Lett., 2009, 11, 3646-3649.

A regio- and stereoselective iodination, along with some examples for bromination, of readily available acrylamides proceeds under mild conditions via a Rh(III)-catalyzed C-H-activation/halogenation mechanism. The reaction represents a rare example of a direct halogenation of electron-poor acrylic acid derivatives to access a variety of differently substituted Z-haloacrylic acid derivatives.
N. Kuhl, N. Schröder, F. Glorius, Org. Lett., 2013, 15, 3860-3863.

A fast and convenient one-step procedure allows the conversion of α,β-unsaturated carbonyl compounds into their corresponding bromo-enones at room temperature under very mild conditions in high yields using NBS-Et3N • 3 HBr in the presence of potassium carbonate in dichloromethane.
D. Jyothi, S. HariPrasad, Synlett, 2009, 2309-2311.

Aryl allylic alcohols are converted to halogenated unsaturated ketones or allylic halides under Moffatt-Swern Conditions using excess DMSO and oxalyl chloride or oxalyl bromide. Electron-poor aromatic rings favor formation of the halogenated ketone, while electron-donating substituents in the ortho or para positions favor formation of the allylic halide.
J. Yin, C. E. Gallis, J. D. Chisholm, J. Org. Chem., 2007, 72, 7054-7057.

α,β-Dihalopropanoate derivatives undergo efficient, selective dehydrohalogenation to form α-haloacrylate analogues in the presence of DMSO. A variety of α-halo Michael acceptors were prepared in dimethyl sulfoxide under mild, base-free conditions, including the preparation of α-bromoacrolein and α-chloro- and bromoacrylonitriles.
W. Li, J. Li, Z.-K. Wan, J. Wu, W. Massefski, Org. Lett., 2007, 9, 4607-4610.

C. Ye, J. M. Shreeve, J. Org. Chem., 2004, 69, 8561-8563.

Use of a zirconocene catalyst based on the Brintzinger ligand and catalytic amounts of methyl aluminoxanes (MAO) effect a >99% regiocontrol of Negishi carboaluminations of 1-alkynes in toluene.
B. H. Lipshutz, T. Butler, A. Lower, J. Am. Chem. Soc., 2006, 128, 15396-15398.

Unsaturated compounds such as alkenes, alkynes, allenes, and methylenecyclopropanes (MCPs) can be dibrominated within minutes by NBS and lithium bromide in THF at room temperature in good to excellent yields under mild conditions.
L.-X. Shao, M. Shi, Synlett, 2006, 1269-1271.

C-O bond cleavage of lithium alkoxides occurs readily at room temperature in the presence of titanium(IV) halides. Capture of the resultant carbocation by alkynes provides an efficient route to trisubstituted (E)-alkenyl halides with high stereoselectivity.
M.-L. Yao, T. R. Quick, Z. Wu, M. P. Quinn, G. W. Kabalka, Org. Lett., 2009, 11, 2647-2649.

α-Bromo- or α-chloro-α,β-unsaturated carbonyl compounds were prepared in good yields by addition of hydrobromic acid or hydrochloric acid to α,β-unsaturated carbonyl compounds in the presence of Oxone in CH2Cl2 followed by treatment of the resulting dihalides with Et3N.
K.-M. Kim, I.-H. Park, Synthesis, 2004, 2641-2644.

Various bis-activated cyclopropenes undergo highly stereoselective ring-opening reactions to produce multisubstituted alkenyl halides in the presence of stoichiometric magnesium halides. Trapping of the magnesium enolate intermediates in situ allows the synthesis of highly functionalized compounds.
Y. Wang, H. W. Lam, J. Org. Chem., 2009, 74, 1353-1355.

A stereoselective multicomponent synthesis of (Z)-β-bromo Baylis-Hillman ketones uses MgBr2 as both the Lewis acidic promoter and the bromine source for the Michael-type addition with α,β-acetylenic ketones to form an active β-bromo allenolate intermediate, which in turn attacks various aldehydes to afford β-bromo Baylis-Hillman adducts in good yields and Z-selectivity.
H.-X. Wei, R. L. Jasoni, J. Hu, G. Li, P. W. Pare, Tetrahedron, 2004, 60, 10233-10237.

A convenient and efficient method for aminobromination of alkylidenecyclopropanes is reported. This is exemplified in the stereoselective preparation of N-[(Z)-3-bromobut-3-en-1-yl]-p-toluenesulfonamides by using p-toluenesulfonamide and N-bromosuccinimide (NBS) as nitrogen and bromine sources, respectively.
X. Huang, W.-J. Fu, Synthesis, 2006, 1016-1017.

A new silver-catalyzed highly regio- and stereoselective difunctionalization reaction of simple terminal alkynes gives (Z)-β-haloenol acetate derivatives in good yields. The resulting products are versatile intermediates in organic synthesis.
Z. Chen, J. Li, H. Jiang, S. Zhu, Y. Li, C. Qi, Org. Lett., 2010, 12, 3262-3265.

Poly{[4-(hydroxy)(tosyloxy)iodo]styrene} was efficient in the halotosyloxylation reaction of alkynes with iodine or NBS or NCS. The polymer reagent could be regenerated and reused.
J.-M. Chen, X. Huang, Synthesis, 2004, 1557-1558.

The use of easy to handle DMPU/HX (X = Br or Cl) reagents enables an atom-economical and metal-free method for the regio- and stereo-selective hydrohalogenation of ynones and ynamides under mild conditions. The reaction tolerates a wide range of functional groups.
X. Zeng, Z. Lu, S. Liu, G. B. Hammond, B. Xu, J. Org. Chem., 2017, 82, 13179-13187.

The reaction of acetylated α-allenic alcohols with LiBr in the presence of 1.5 mol % of Pd(OAc)2 provides substituted (Z,E)-2-bromo-1,3-dienes in good yields with excellent diastereoselectivity. Both secondary and tertiary acetates as well as terminal and nonterminal allenes can be converted.
A. Horváth, J.-E. Bäckvall, J. Org. Chem., 2001, 66, 8120-8126.

A chemoselective isomerization of secondary-type propargylic alcohols under Appel-type reaction conditions in the presence of Ph3P, CBr4 and additives gives allenic bromides, propargylic bromides and brominated dienes.
N. Sakai, T. Maruyama, T. Konakahara, Synlett, 2009, 2105-2106.

Unprecedented decompositions of unprotected alkynyl hydrazones provide allenoates via DABCO-promoted Wolff-Kishner reduction, tetrasubstituted α,γ-dihaloallenoates in the presence of N-halosuccinimides, and functionalized tricyclic azepines in the presence of DBU.
P. Jamwal, A. Sharma, R. Gurubrahamam, Org. Lett., 2023, 25, 6607-6612.

Bromoboration of propyne with BBr3 proceeds in syn-selectivity to produce (Z)-2-bromo-1-propenyldibromoborane, which is prone to stereoisomerization. Treatment with pinacol yields the stable and storable pinacolboronate. Negishi coupling gives trisubstituted (Z)-alkenylpinacolboronates in good yields. Iodinolysis of the boronates affords alkenyl iodides in good yields.
C. Wang, T. Tobrman, Z. Xu, E.-i. Negishi, Org. Lett., 2009, 11, 4092-4095.

Cationic Au complexes containing strongly basic NHC ligands and noncoordinating anions such as BArF4 catalyze a cis haloalkynylation between terminal alkynes and aromatic haloalkynes, whereas introduction of a weakly basic triflate counteranion results in the stereoselective hydroalkynylation of the haloalkyne, yielding haloenyne products in good yields and complete trans selectivity.
P. D. García-Fernández, J. Iglesias-Sigüenza, P. S. Rivero-Jerez, E. Díez, E. Gómez-Bengoa, R. Fernández, J. M. Lassaletta, J. Am. Chem. Soc., 2020, 142, 16082-16089.