Organic Chemistry Portal >
Reactions > Organic Synthesis Search

Categories: C-C Bond Formation > Chains >

Propargylic Substitution

Related:

 


Recent Literature


A general and efficient FeCl3-catalyzed substitution reaction of propargylic alcohols with carbon- and heteroatom-centered nucleophiles such as allyl trimethylsilane, alcohols, aromatic compounds, thiols, and amides, forms new C-C, C-O, C-S and C-N bonds.
Z.-P. Zhan, J.-L. Yu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem., 2006, 71, 8298-8301.


A general and efficient FeCl3-catalyzed substitution reaction of propargylic alcohols with carbon- and heteroatom-centered nucleophiles such as allyl trimethylsilane, alcohols, aromatic compounds, thiols, and amides, forms new C-C, C-O, C-S and C-N bonds.
Z.-P. Zhan, J.-L. Yu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, J.-P. Li, J. Org. Chem., 2006, 71, 8298-8301.


A palladium-catalyzed cross-coupling of allyl boronates and chiral propargyl acetates delivers chiral 1,5-enynes with excellent levels of chirality transfer. The reaction can be applied across a broad range of substrates.
M. J. Ardolino, J. P. Morken, J. Am. Chem. Soc., 2012, 134, 8770-8773.


The reaction of alkoxides with boron trichloride results in the generation of cations that can be allylated in subsequent transformations. The absence of Brønsted acids can make a significant difference in such syntheses.
G. W. Kabalka, M.-L. Yao, S. Borella, J. Am. Chem. Soc., 2006, 128, 11320-11321.


An efficient Cu(OTf)2-catalyzed sp3-sp2 coupling of propargylic alcohols with terminal alkenes gives a diverse range of 1,4-enynes in very good yields. The reaction is tolerant to air and atom-economical.
G.-B. Huang, X. Wang, Y.-M. Pan, H.-S. Wang, G.-Y. Yao, Y. Zhang, J. Org. Chem., 2013, 78, 2742-2745.


An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes provides 3,4-substituted 1,5-enynes with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, conditions are reported that allow the reaction to proceed with complete reversal of diastereoselectivity.
J. Zhu, Y. Wang, A. D. Charlack, Y.-M. Wang, J. Am. Chem. Soc., 2022, 144, 15480-15487.


Under different conditions, the reaction of propargyl alcohols and terminal alkynes leads to the selective formation of 1,4-diynes and polysubstituted furans/pyrroles. Water is the only byproduct in the atom economic, selective synthesis of 1,4-diynes and pyrroles, whereas the synthesis of furans is fully atom economic.
T. Wang, X.-l. Chen, L. Chen, Z.-p. Zhan, Org. Lett., 2011, 13, 3324-3327.


C-O bond cleavage of lithium alkoxides occurs readily at room temperature in the presence of titanium(IV) halides. Capture of the resultant carbocation by alkynes provides an efficient route to trisubstituted (E)-alkenyl halides with high stereoselectivity.
M.-L. Yao, T. R. Quick, Z. Wu, M. P. Quinn, G. W. Kabalka, Org. Lett., 2009, 11, 2647-2649.


A one-pot procedure for the synthesis of 2-alkyl-2-arylcyanoacetates based on a Pd(OAc)2/dppf-catalyzed enolate arylation followed by in situ alkylation tolerates a diverse range of aryl and heteroaryl bromides, and provides a rapid entry to a wide range of products in very good to yield.
X. Wang, A. Guram, E. Bunel, G.-Q. Cao, J. R. Allen, M. M. Faul, J. Org. Chem., 2008, 73, 1643-1645.