Organic Chemistry Portal >
Reactions > Organic Synthesis Search

Categories: C-H Bond Formation >

Reduction of amides to imines

Related


Recent Literature


A chemoselective activation of a secondary amide with triflic anhydride in the presence of 2-fluoropyridine enables a mild reduction using triethylsilane, a cheap and rather inert reagent. Imines can be isolated after a basic workup or readily transformed to the aldehydes following an acidic workup. The amine moiety can be accessed by addition of Hantzsch ester to the reaction mixture.
G. Pelletier, W. S. Bechara, A. B. Charette, J. Am. Chem. Soc., 2010, 132, 12817-12819.


Zirconocene hydride catalyzes a mild method for the semireduction of both secondary and tertiary amides to imines. While secondary amides furnish a diverse array of imines in very good yield with excellent chemoselectivity, a reductive transamination of tertiary amides is also achievable in the presence of a primary amine at room temperature.
R. A. Kehner, G. Zhang, L. Bayeh-Romero, J. Am. Chem. Soc., 2023, 145, 4921-4927.


Zirconocene hydride catalyzes a mild method for the semireduction of both secondary and tertiary amides to imines. While secondary amides furnish a diverse array of imines in very good yield with excellent chemoselectivity, a reductive transamination of tertiary amides is also achievable in the presence of a primary amine at room temperature.
R. A. Kehner, G. Zhang, L. Bayeh-Romero, J. Am. Chem. Soc., 2023, 145, 4921-4927.

Related


A transition-metal-free catalytic hydrosilylation based on t-BuOK (5 mol %) and (MeO)3SiH or (EtO)3SiH allows the reduction of tertiary amides to their corresponding enamines with high selectivity in very good yields.
A. Volkov, F. Tinnis, H. Adolfsson, Org. Lett., 2014, 16, 680-683.