Organic Chemistry Portal >
Reactions > Organic Synthesis Search

Categories: C=O Bond Formation > Synthesis of aldehydes >

Synthesis of aldehydes by cleavage of alkenes

Related


Name Reactions


Ozonolysis


Recent Literature


A mild and operationally simple protocol for the selective aerobic oxidation of aromatic olefins to carbonyl compounds is catalyzed by a Fe(III) species bearing a pyridine bisimidazoline ligand at 1 atm of O2. The method cleaves α- and β-substituted styrenes to afford benzaldehydes and aromatic ketones in high yields with excellent chemoselectivity and very good functional group tolerance.
A. Gonzalez-de-Castro, J. Xiao, J. Am. Chem. Soc., 2015, 137, 8206-8218.


For a selective oxidation of olefins, in particular, aromatic olefins to carbonyls, stoichiometric toxic oxidants or a high-cost catalyst is required. A practical light-enabled oxidation of olefins using H2O2 as a clean and low-toxic oxidant provides a broad scope of carbonyls in high yield without catalyst.
W. Yu, Z. Zhao, Org. Lett., 2019, 21, 7713-7716.


Sodium benzene sulfinate catalyzed a visible-light-driven aerobic oxidative cleavage of olefins to provide the corresponding aldehydes and ketones under transition-metal-free conditions. Notably, α-halo-substituted styrenes proceeded with photoinduced oxidation to finally afford α-halo-acetophenones with halogen migration.
Y.-X. Chen, J.-T. He, M.-C. Wu, Z.-L. Liu, K. Tang, P.-J. Xia, K. Chen, H.-Y. Xiang, X.-Q. Chen, H. Yang, Org. Lett., 2022, 24, 3920-3925.


A ruthenium catalyst bearing a fused π-conjugated imidazo[1,2-a][1,8]naphthyridine-based abnormal N-heterocyclic carbene ligand enables a selective oxidation of C═C bonds in a broad range of substrate to aldehydes and C≡C bonds to α-diketones in an EtOAc/CH3CN/H2O solvent mixture at room temperature.
P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha, R. Ramapanicker, J. K. Bera, J. Am. Chem. Soc., 2014, 136, 13987-13990.


Osmium tetroxide has been microencapsulated in a polyurea matrix. These microcapsules have been effectively used as recyclable catalysts in the dihydroxylation and the oxidative cleavage of olefins.
S. V. Ley, C. Ramarao, A.-L. Lee, N. Ostergaard, S. C. Smith, I. M. Shirley, Org. Lett., 2003, 5, 185-187.


The use of PhI(OAc)2 in dichloromethane enables a clean oxidative cleavage of 1,2-diols to aldehydes. In the presence of OsO4 as catalyst, NMO and 2,6-lutidine, olefinic bonds can be cleaved in acetone/water to yield the corresponding carbonyl compounds.
K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Org. Lett., 2010, 12, 1552-1555.


A gold(I)-catalyzed oxidative cleavage of alkenes with tert-butyl hydrogenperoxide (TBHP) as the oxidant in the presence of neocuproine afforded ketones or aldehydes as products.
D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett., 2006, 8, 693-696.


A series of symmetrical and unsymmetrical stilbenes bearing electron-withdrawing groups were oxidatively cleaved to the corresponding aldehydes in high yield by electrocatalytic anodic oxidation employing a high oxidation potential triphenylamine electrocatalyst. The oxidations apparently involve the corresponding 1,2-diols, which are also converted to aldehydes in high yield under the same conditions.
X. Wu, A. P. Davis, A. J. Fry, Org. Lett., 2007, 9, 5633-5636.


A catalytic amount of a composite material, RuO2/BaTi4O9, in combination with NaIO4 in EtOAc-H2O has been shown to efficiently cleave alkenes, affording ketones, aldehydes and/or carboxylic acids in high yields.
H. Okumoto, K. Ohtsuko, S. Banjoya, Synlett, 2007, 3201-3205.


Specific oxidation protocols have been developed for the cleavage of styrenes, aliphatic olefins, and terminal aliphatic olefins to carbonyl compounds with ruthenium trichloride as catalyst. Olefins that are not fully substituted are converted to aldehydes rather than carboxylic acids.
D. Yang, C. Zhang, J. Org. Chem., 2001, 66, 4814-4818.


The oxidative cleavage of C=C bonds adjacent to aryl and alkyl moieties was efficiently achieved with monoacetylated bishydroperoxides. Base-mediated fragmentation of monoacetylated bishydroperoxides generates singlet molecular oxygen as active oxidant in situ. All the reactions furnished the respective carbonyl compounds in good yields at room temperature within short reaction times.
D. Azarifar, Z. Najminejad, Synlett, 2013, 24, 1377-1382.


A simple, efficient, and environmentally beneficient disulfide-catalyzed photocatalytic regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes offers mild reaction conditions, excellent regioselectivity, and compatibility with a wide range of functional groups.
R. A. Fernandes, P. Kumar, A. Bhowmik, D. A. Gorve, Org. Lett., 2022, 24, 3436-3439.


Iron(III) sulfate mediates a simple and efficient regioselective oxidative cleavage of 1-arylbutadienes in the presence of oxygen. The reaction offers good yields, excellent regioselectivity, and good functional group tolerance.
A. Bhowmik, R. A. Fernandes, Org. Lett., 2019, 21, 9203-9207.