Categories: N-H Bond Formation >
Reduction of imines
Related |
| ![]() Reductive Amination |
Recent Literature
A nickel-catalyzed enantioselective transfer hydrogenation of N-sulfonyl
imines offers excellent α-selectivity. The use of inexpensive 2-propanol-d8
as a deuterium source enables a deuteration with high deuterium content. In
addition, no deuteration of β-C-H and the remote C-H of N-sulfonyl amines
occurred, which is hard to achieve using other imines or by hydrogen isotope
exchange with D2O.
P. Yang, L. Zhang, K. Fu, Y. Sun, X. Wang, J. Yue, Y. Ma, B. Tang,
Org. Lett., 2020, 22, 8278-8284.
Asymmetric reduction of ketimines with trichlorosilane can be catalyzed by
N-methylvaline-derived Lewis-basic formamides with high enantioselectivity
and low catalyst loading at room temperature in toluene. Appending a fluorous
tag to the catalyst simplifies the isolation procedure and allows the catalyst
to be recycled.
A. V. Malkov, M. Figlus, S. Stončius, P. Kočovský, J. Org. Chem., 2007,
72, 1315-1325.
Chiral Ru-catalysts in combination with formic acid/triethylamine as the
hydrogen donor enable a highly efficient ATH of N-diphenylphosphinyl
acyclic imines. Substrates include various aryl alkyl and heteroaryl alkyl
substituted imines, and the corresponding reduced amines were obtained with
excellent enantiomeric excess and yields.
D. He, C. Xu, X. Xing, Org. Lett., 2022, 24,
8354-8358.
A cationic [IrH(THF)(P,N)(imine)][BArF] catalyst containing a
P-stereogenic MaxPHOX ligand enables a direct asymmetric hydrogenation of N-methyl
and N-alkyl imines with high enantioselectivity. The labile
tetrahydrofuran ligand allows for effective activation and reactivity, even at
low temperatures.
E. Salomó, A. Gallen, G. Sciortino, G. Ujaque, A. Grbulosa, A. Lledós, A.
Riera, X. Verdaguer, J. Am. Chem. Soc.,
2018,
140, 16360-16367.
L-Piperazine-2-carboxylic acid derived N-formamides are highly
enantioselective Lewis basic catalysts for the hydrosilylation of imines
with trichlorosilane. High isolated yields and enantioselectivities were
obtained for a broad range of substrates, including aromatic and aliphatic
ketimines.
Z. Wang, M. Cheng, P. Wu, S. Wei, J. Sun, Org. Lett.,
2006, 8, 3045-3048.
L-Pipecolinic acid derived formamides are highly efficient and
enantioselective Lewis basic organocatalysts for the mild reduction of
various N-aryl imines with trichlorosilane.
Z. Wang, X. Ye, S. Wei, P. Wu, A. Zhang, J. Sun, Org. Lett.,
2006, 8, 999-1001.
The combination of molecular iodine and a hydrosilane enables a practical
reduction of N-sulfonyl aldimines to the corresponding N-alkylsulfonamides.
J. Jiang, L. Xiao, Y.-L. Li, J. An, Synlett, 2021,
32,
291-294.
A benzenedithiolate Rh(III) complex [TpMe2Rh(o-S2C6H4)(MeCN)],
which can heterolytically activate H2, catalyzes hydrogenation of
imines under ambient temperature and pressure with high chemoselectivity.
Y. Misumi, H. Seino, Y. Mizobe, J. Am. Chem. Soc., 2009,
131, 14636-14637.
An anionic iridium complex [Cp*Ir(2,2'-bpyO)(OH)][Na] is a general and highly
efficient catalyst for transfer hydrogenation of ketones and imines with
methanol as hydrogen source under base-free conditions. Nitro, cyano, and ester
groups were tolerated under the reaction conditions.
R. Wang, X. Han, J. Xu, P. Liu, F. Li, J. Org. Chem., 2020, 85,
2242-2249.
Various benzaldimines and ketimines can be hydrosilated efficiently with PhMe2SiH
employing B(C6F5)3 as a catalyst. Spectral
evidence supports the intermediacy of a silyliminium cation with a hydridoborate
counterion formed via abstraction of a hydride from PhMe2SiH by B(C6F5)3
in the presence of imines.
J. M. Blackwell, E. R. Sonmor, T. Scoccitti, W. E.
Piers, Org. Lett., 2000, 2, 3921-3923.
A simple and convenient procedure allows the reductive amination of aldehydes
and ketones using sodium borohydride as reducing agent and boric acid, p-toluenesulfonic
acid monohydrate or benzoic acid as activator under solvent-free conditions.
B. T. Cho, S. K. Kang, Tetrahedron, 2005,
61, 5725-5734.
1,2,4,3-triazaphospholenes halides catalyze the 1,2 hydroboration of imines and
α,β unsaturated aldehydes with pinacolborane, including examples that did not
undergo hydroboration by previously reported diazaphospholene systems. DFT
calculations support a mechanism where a triazaphospholene cation interacts with
the substrate.
C.-H. Tien, M. R. Adams, M. J. Ferguson, E. R. Johnson, A. W. H. Speed, Org. Lett.,
2017, 19, 5565-5568.
A simple [Ru(p-cymene)Cl2]2 complex is used as a
catalyst precursor in a catalyzed hydroboration of nitriles and imines using
pinacolborane with unprecedented catalytic efficiency.
A. Kaithal, B. Chatterjee, C. Gunanathan, J. Org. Chem.,
2016, 81, 11153-11161.
Photoredox catalysis mediates an umpolung reactivity of imines exemplified by
proton abstraction from water as a key step in the reduction of benzophenone
ketimines to amines in very good yields. Deuterium is introduced into amines
efficiently using D2O as an inexpensive deuterium source.
R. Wang, M. Ma, X. Gong, G. B. Panetti, X. Fan, P. J. Walsh, Org. Lett.,
2018, 20, 2403-2406.
A visible-light photocalytic method for the chemoselective transfer
hydrogenation of diarylketimines in batch and continuous flow utilizes Et3N
as both hydrogen source and single-electron donor. The reaction tolerates other
reducible functional including nitriles, halides, esters, and ketones.
Continuous-flow processing facilitates straightforward scale-up of the reaction.
D. J. van As, T. U. Connell, M. Brzozowski, A. D. Scully, A. Polyzos, Org. Lett.,
2018, 20, 905-908.
Water-soluble amide iridium complexes catalyze transfer hydrogenation
reduction of N-sulfonylimines under environmentally friendly conditions,
affording a series of sulfonamide compounds in excellent yields. This protocol
gives an operationally simple, practical, and environmentally friendly strategy
for synthesis of sulfonamide compounds.
H. Wen, N. Luo, Q. Zhu, R. Luo, J. Org. Chem., 2021, 86,
3850-3859.
Transfer hydrogenation of chiral α,β-unsaturated N-(tert-butylsulfinyl)ketimines
followed by removal of the sulfinyl group provides primary allylic amines with
enantiomeric excesses from 97 to >99%.
E. Selva, Y. Sempere, D. Ruiz-Martínez, O. Pablo, D. Guijarro, J. Org. Chem.,
2017, 82, 13693-13699.
A triazole-based N-heterocyclic carbene borane (NHC-borane) enables an
efficient and highly diastereoselective reduction of various of tert-butanesulfinyl
ketimines. The reagent was more efficient than or comparable to commonly used
reductive reagents such as NaBH4, NaBH3CN, l-selectride, a
Ru catalyst, or BH3-THF.
T. Liu, L-y. Chen, Z. Sun, J. Org. Chem.,
2015,
80, 11441-11446.
The combination of HMPA and SmBr2 in THF is a powerful reductant
that is capable of reducing ketimines and alkyl chlorides at room
temperature.
B. W. Knettle, R. A. Flowers, II, Org. Lett., 2001, 3,
2321-2324.
The organic reductant 1-acetyl-2,3-dimethylimidazolidine is able to directly
reduce a series of aromatic, aliphatic and α,β-unsaturated aldehydes as well as
imines in high yields.
D. Li, Y. Zhang, G. Zhou, W. Guo, Synlett, 2008,
225-228.
A novel process for the efficient, enantioselective hydrosilylation of
ketimines based on catalytic amounts of copper hydride, (R)-DTBM-SEGPHOS,
and an inexpensive silane (tetramethyldisiloxane, TMDS) has been developed.
The resulting products are converted to their free-base form upon mild
hydrolysis.
B. H. Lipshutz, H. Shimizu, Angew. Chem. Int. Ed., 2004,
43, 2228-2230.
An aryloxotitanium complex is a highly chemo- and regioselective catalyst for
intermolecular hydroamination of terminal alkynes. Branched imines are obtained
in good yield with various primary aromatic and aliphatic amines.
V. Khedkar, A. Tillak, M. Beller, Org. Lett., 2003, 5,
4767-4770.
An efficient Pd(OAc)2-catalyzed asymmetric hydrogenation of
α-iminoesters at 1 atm hydrogen pressure and room temperature provides chiral
α-arylglycine fragments, which are widely found in many chiral products and
bioactive molecules.
J. Chen, F. Li, F. Wang, Y. Hu, Z. Zhang, M. Zhao, W. Zhang,
Org. Lett., 2019, 21, 9060-9065.
α-Imino esters derived from aryl and alkyl keto esters could be reduced
to the corresponding α-amino esters in excellent yields and in high enantiomeric
excesses using 5 mol-% of a chiral phosphoric acid as catalyst, Hantzsch ester
as hydride donor, and toluene as solvent.
G. Li, Y. Liang, J. C. Antilla, J. Am. Chem. Soc., 2007,
129, 5830-5831.
Brønsted acid catalysis enables highly efficient, regioselective, and
enantioselective transfer hydrogenation of α-keto ketimines and reductive
amination of diketones. A series of chiral α-amino ketones is prepared in high
yields, excellent regioselectivities, and enantioselectivities.
W. Wen, Y. Zeng, L.-Y. Peng, L.-N. Fu, Q.-X. Guo, Org. Lett.,
2015,
17, 3922-3925.
A BINOL-derived boro-phosphate catalyzes an enantioselective reduction of
α-trifluoromethylated imines to provide chiral α-trifluoromethylated amines in
high yields and with excellent enantioselectivities in the presence of
catecholborane as hydride source under mild conditions.
H. He, X. Tang, Y. Cao, J. C. Antilla, J. Org. Chem., 2021, 86,
4336-4345.