Categories: Synthesis of N-Heterocycles > benzo-fused N-Heterocycles >
Synthesis of quinoxalines
Recent Literature
Bioinspired ortho-quinone catalysts have been applied to oxidative
synthesis of benzimidazoles, quinoxalines and benzoxazoles from primary amines
in high yields under mild conditions with oxygen as the terminal oxidant.
R. Zhang, Y. Qin, L. Zhang, S. Luo, Org. Lett.,
2017, 19, 5629-5632.
A convenient and eco-friendly nickel-catalyzed synthesis of quinoline and
quinoxaline via double dehydrogenative coupling starting from 2-aminobenzyl
alcohol/1-phenylethanol and diamine/diol, respectively, operates at mild
reaction temperatures. The inexpensive molecularly defined catalyst can easly be
regenerated under aerobic/O2 oxidation.
A. K. Bains, V. Singh, D. Adhikari, J. Org. Chem., 2020, 85, 14971-14979.
The inexpensive and simple NiBr2/1,10-phenanthroline system catalyzed
a synthesis of a series of quinoxalines from both 1,2-diamines and
2-nitroanilines.
S. Shee, D. Panja, S. Kundu, J. Org. Chem., 2020, 85,
2775-2784.
Elemental sulfur mediates a straightforward and catalyst-free reaction of
sulfoxonium ylides with o-phenylenediamines to provide quinoxaline
derivatives in good yields. Due to the simple and mild reaction conditions, a
broad range of functional groups were well tolerated.
T. N. Chaubey, P. J. Borpatra, S. K. Pandey, Org. Lett., 2023, 25,
5329-5332.
Aerobic oxidation of deoxybenzoins is efficiently catalyzed by
1,4-diazabicyclo[2.2.2]octane (DABCO) with air as the sole oxidant to give the
corresponding benzils in excellent yields. The process has been successfully
extended to a one-pot synthesis of quinoxalines from benzyl ketones and aromatic
1,2-diamines.
C. Qi, H. Jiang, L. Huang, Z. Chen, H. Chen, Synthesis, 2011,
387-396.
Copper-catalyzed condensation and C-N bond formation of 2-iodoanilenes,
arylacetaldehydes, and sodium azide, in a one-pot three-component reaction
enables the synthesis of quinoxalines in good yields. Under optimized reaction
conditions, starting materials were reacted in the presence of CuI, K2CO3
in DMSO at 80°C for 20 hours.
H. Yuan, K. Li, Y. Chen, Y. Wang, J. Cui, B. Chen, Synlett, 2013, 24,
2315-2319.
A copper-catalyzed cycloamination of α-Csp3-H bond of N-aryl
ketimines with sodium azide provides an efficient access to quinoxalines. The
reaction features mild conditions and a broad functional group tolerance.
T. Chen, X. Chen, J. Wei, D. Lin, Y. Xie, W. Zeng, Org. Lett., 2016, 18,
2078-2081.
The combination of a cobalt catalyst and oxygen as a terminal oxidant
mediates an annulation of terminal alkynes and o-phenylenediamines. This
method shows wide substrate scope and good functional group tolerance and
provides a wide range of quinoxalines in good yields.
H.-R. Yang, Z.-Y. Hu, X.-C. Li, L. Wu, X.-X. Guo, Org. Lett., 2022, 24,
8392-8396.
A convenient synthesis of substituted quinoxalines in good yields from o-phenylenediamines
and ynones via Michael addition, dehydration condensation, and base-promoted
C-α-CH2-extrusion under metal-free conditions features high
regioselectivity, efficiency, and environmental friendliness.
J. Shen, X. Wang, X. Lin, Z. Yang, G. Cheng, X. Cui, Org. Lett., 2016, 18,
1378-1381.
A chemoselective heterodimerization of weak electrophilic ortho-diisocyanoarenes
and common isocyanides generates quinoxaline-based zwitterionic intermediates.
This reactive zwitterion could react in situ with various trapping agents to
furnish a range of structurally diverse quinoxalines.
L. Bao, M. Li, L. Zhang, Y. Xue, J. Dong, X. Xu, Org. Lett., 2023, 25,
2366-2371.
A Cu-electrocatalytic azidation of N-aryl enamines with NaN3
and subsequent denitrogenative annulation provides quinoxalines. Only 0.5 mol %
of copper(II) chloride was employed for this cascade transformation displaying
excellent functional-group compatibility even with complex bioactive scaffolds.
M. Baidya, S. D. Sarkar, Org. Lett., 2023, 25,
5896-5901.
One-pot two-step cyanide-mediated sequential reactions of ortho-phenylenediamines
with aldehydes under aerobic oxidation conditions afford 2-aminoquinoxalines in
high yields. Various substrates, including aliphatic aldehydes bearing acidic
α-protons, are applicable.
Y.-H. Cho, K.-H. Kim, C.-H. Cheon, J. Org. Chem., 2014,
79, 901-907.
The combination of Pd/PTABS enables an exceptionally mild and highly efficient
catalytic amination of chloroheteroarenes with secondary amines at ambient
temperature.
S. S. M. Bandaru, S. Bhilare, N. Chrysochos, V. Gayakhe, I. Trentin, C. Schulzke,
A. R. Kapdi, Org. Lett.,
2018, 20, 473-476.